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As an engineering material, DNA is well suited for the construction of bio-
chemical circuits and systems, because it is simple enough that its
interactions can be rationally designed using Watson–Crick base pairing
rules, yet the design space is remarkably rich. When designing DNA sys-
tems, this simplicity permits using functional sections of each strand,
called domains, without considering particular nucleotide sequences. How-
ever, the actual sequences used may have interactions not predicted at the
domain-level abstraction, and new rigorous analysis techniques are needed
to determine the extent to which the chosen sequences conform to the
system’s domain-level description. We have developed a computational
method for verifying sequence-level systems by identifying discrepancies
between the domain-level and sequence-level behaviour. This method
takes a DNA system, as specified using the domain-level tool Peppercorn,
and analyses data from the stochastic sequence-level simulator Multistrand
and sequence-level thermodynamic analysis tool NUPACK to estimate impor-
tant aspects of the system, such as reaction rate constants and secondary
structure formation. These techniques, implemented as the Python package
KinDA, will allow researchers to predict the kinetic and thermodynamic
behaviour of domain-level systems after sequence assignment, as well as to
detect violations of the intended behaviour.

1. Introduction
DNA is a widely used engineering substrate for biochemical circuits and
systems. Using simple Watson–Crick base-pairing rules, molecules can be
designed to fold into stable conformations and large assemblies [1], but
they can also be programmed to implement dynamic systems using toehold-
mediated DNA strand displacement [2] for triggered rearrangement of
molecular components [3]. Experimental demonstrations have shown that
DNA-based circuits can carry out a diverse range of information-processing
tasks, including amplification and analogue computation [4–12], digital logic
gates and circuits [13–18], neural network pattern recognition [19–21], prob-
abilistic circuits [22] and the implementation of chemical reaction network
(CRN) dynamics [23,24]. Theoretical studies have established that DNA-
based circuits are capable of arbitrarily complex digital and analogue circuits
[25–27], efficient neural network computation and autonomous learning
[28,29], the full range of dynamical behaviours supported by mass-action
kinetics of abstract CRNs [30–32], and even the full range of algorithmic
behaviours supported by Turing machines [33,34].

DNA-based circuits can be large and complex, involving interactions between
many DNA molecules each composed of multiple interacting DNA strands.
Experimentally demonstrated systems have involved hundreds of synthesized
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molecules with thousands of potential interactions [16,19,21].
Design of these systems can be a time-consuming process
because the sequence and length of every DNA strand must
be carefully chosen to tune the rate of each reaction, as well
as to avoid interactions between system components that
should be orthogonal. This paper focuses on the non-trivial
problem of system verification, that is, checking that a system
as a whole behaves as designed. As DNA-based systems
grow in size and complexity, there is an increasing need
within the nucleic acid programming community for a
unified framework toanalyse andverifyarbitrary DNAsystems.

The design and verification of DNA systems is often
initially performed without regard to specific DNA
sequences by describing systems usingdomains, functionally
distinct contiguous sections composing each DNA strand.
Under certain idealized assumptions about interactions
between domains, it is possible to verify the system by
enumerating all possible reactions between domain-level
DNA complexes [36–38] and establishing a correspondence
with a formal description of the intended circuit function
[39–42].

Domain-level analysis may be contrasted with sequence-
level analysis, which must account for additional non-ideal
interactions between domains, such as binding due to partial
domain sequence matches. Several software packages are
available for performing sequence-level analysis without
reference to the system’s intended behaviour, both with
respect to thermodynamic equilibrium [43–45] and with
respect to kinetic pathways [46–48]. Such de novo analysis
can uncover completely unexpected system behaviour, but
this analysis can be intractable with more complex systems.

We present a novel framework for analysing and verify-
ing an important subset of DNA systems: unpseudoknotted
strand-displacement systems designed using domains. In
contrast to previous sequence-level techniques, our frame-
work aims to analyse entire systems rather than individual
pathways or collections of small numbers of molecules,
while still giving users access to detailed information about
the behaviour of a system’s components to debug potential
problems. This analysis is made feasible by using the
domain-level system description to guide sequence-level
analysis so that the behaviour of the sequence-level system
can be verified by comparing against domain-level
predictions.

Section 2 describes basic concepts and current methods of
analysing a system at the domain and sequence levels. In §3,
we propose a conceptual framework that augments existing
sequence-level analysis techniques by using the domain-
level information to guide stochastic simulations and
thermodynamic analysis. Section 4 describes four case studies
that demonstrate the use of this framework on representative
DNA strand-displacement (DSD) schemes. The framework
described in this paper has been implemented in the
Python software package KinDA (Kinetic DNA strand-
displacement analyser), available on GitHub [35] and via a
pre-built Amazon Machine Image.

2. Background
2.1. Basic concepts
A domain-level description of a DNA system represents the
strands and complexes in terms of domains rather than

specific nucleotide sequences. Each set of bound DNA
strands, or complex, exhibits a particular secondary structure.
A valid secondary structure must have each domain
unbound, or completely bound to a single complementary
domain. In this paper, we further dictate that valid secondary
structures be non-pseudoknotted (i.e. have a well-defined
dot-parens-plus representation [49]). Complementary domains
are denoted throughout this paper with an asterisk (*).
Examples of valid structures are shown in figure 1a, with
accompanying dot-parens-plus structure representations [45].

DNA interactions that generate new complexes or
changes in secondary structure are calledreactions. Multiple
sequential reactions can perform an essential molecular
primitive called toehold-mediated strand displacement, in
which two complexes bind at a short domain, or toehold,
which makes a subsequent branch migration step favourable
(figure 1b). Additional molecular primitives are also available
for incorporation into DNA systems: hybridization of
complementary single-stranded domains to form a duplex,
unbinding of a duplex region for sufficiently short domains,
and strand exchange by four-way branch migration at a
branched junction. Systems built using any combination of
these primitives are called strand-displacement systems,1 and
can produce complicated and sophisticated reaction
networks.

At the sequence level, each domain is assigned a particu-
lar nucleotide sequence, and its complement’s sequence is
determined by Watson–Crick base pairing. However, in
sequence-level analysis and simulation, we allow the full
range of binding between any pair of complementary nucleo-
tides, including G-T wobble base pairs. Figure 1c shows
examples of sequence-level secondary structure, which may
not exactly match the intended domain-level structures.
Additional unimolecular and bimolecular reactions are also
possible at the sequence level (figure 1d). Poor sequence
design can lead to sequence-level structures or reactions that
interfere with the system’s intended domain-level reactions.

2.2. Current methods of domain-level system analysis
Domain-level systems involving multiple steps of strand dis-
placement at multiple sites on different complexes can
become difficult and error-prone to analyse by hand. By
limiting the reaction types allowed at the domain level (see
§3.1), it becomes computationally feasible to automatically
enumerate all the domain-level reactions possible between a
given set of DNA complexes. Suchreaction enumeration is per-
formed by the software tools Peppercorn [38] and Visual
DSD [36,37] and by the methods proposed by Kawamata
et al. [50,51]. Many reaction enumerators consider only
unpseudoknotted complexes, although expanding the range
of allowed complexes to include pseudoknots is an active
area of research [52]. Here we provide an overview of the
approach taken by Peppercorn, but the other reaction
enumerators have similar or related concepts.

Figure 2a shows an example of an entropy-driven catalyst
system [7] described at the domain level. This relatively
simple system uses six domains to define seven complexes,
with additional transient intermediates predicted by reaction
enumeration. To simplify the reaction network, one may
apply a timescale separation during reaction enumeration,
classifying all interactions as either fast or slow. By default,
unimolecular reactions are considered fast and bimolecular
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reactions slow, while reactions involving three or more mol-
ecules do not occur.2 Separation of timescales greatly
simplifies domain-level analysis of the system and can
allow complete enumeration of all reactions in cases where
the full network would be too large or infinite. Note that
timescale separation according to unimolecular versus bi-
molecular reactions correctly describes system behaviour in
the low concentration limit.

Timescale separation motivates a construct called therest-
ing macrostate, a set of conformations that are strongly
connected by fast reactions but have no outgoing fast reac-
tions.3 Resting macrostates are stable on the timescale of the
fast reactions. Examples of resting macrostates are shown in
figure 2b,c.

Detailed reaction enumeration produces an exhaustive
set of reactions between one or more complexes in terms
of their specific domain-level conformations. Reaction
condensation creates a new set of reactions by taking the
directly enumerated reactions, referred to as the detailed
reactions, and combining each slow reaction with a series
of subsequent fast reactions into a single reaction. This pro-
cess is described in more detail by Grun et al. [38]. In
contrast to detailed reactions, thesecondensed reactions have
resting macrostates as reactants and products. Figure 2d
shows the condensed reactions for the detailed reaction
network in figure 2 a.

The sets of detailed reactions and condensed reactions can
be examined to determine if the domain-level system specifi-
cation is logically correct. In simple systems, this verification
can be performed by direct inspection of either set of reac-
tions. In more complex systems, other methods are
necessary, such as bisimulation [41], pathway decomposition
[40] or serializability analysis [39].

2.3. Current methods of sequence-level system
verification

While domain-level verification is often a necessary prelimi-
nary test of a system, additional verification is required
after specific sequences are assigned to each domain. The
increased state space and possible molecular interactions at
the sequence level make it difficult to directly apply the tech-
niques used at the domain level. In particular, logical proof is
much more challenging. This motivates the use of alternative
approaches, such as stochastic simulation, for sequence-level
verification.

Previous methods for sequence-level analysis do not use
the original domain-level specification of a system, instead
performing de novo analysis based on the sequence infor-
mation alone [43–48]. Thermodynamic analysis tools like
NUPACK [45], ViennaRNA [44] and the mfold web server
[43] analyse the probability of allowed secondary structures
assuming the Boltzmann equilibrium has been reached.
This analysis is suitable when considering very fast reactions
because thermodynamic equilibrium is reached over short
timescales and kinetic effects are less significant.

When kinetic considerations become relevant, stochastic
simulators may be used to follow conformational changes
and reactions as they happen. Stochastic nucleic acid simu-
lators that operate at the nucleotide sequence level, such as
Kinfold [46], Kinefold [47] and Multistrand [48], consider
reaction kinetics through the space of secondary structures
via elementary steps that involve the binding and unbinding
of single base pairs. Rate constants for longer reaction path-
ways can be derived from multiple stochastic trajectories,
revealing kinetic properties hidden by thermodynamic
analysis.
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Figure 1.Overview of DNA systems at the domain and sequence level. (a) Examples of domain-level secondary structure, specified in domain-level dot-parens-plus
form. Domain-level dot-parens-plus representations use a period •.• to represent an unbound domain, a balanced pair of parentheses •(• and •)• to specify each pair of
bound domains, and the beginning of a new strand with a plus •þ •. (b) A simple domain-level reaction termed toehold-mediated strand-displacement, in which
an invading strand (domains 1 and 2) binds to a base strand and displaces the incumbent strand (domains 2 and 1). The toehold (domain 1) is shorter than domain
2; two strands bound merely by a toehold may dissociate spontaneously. (c) In sequence-level dot-parens-plus notation, each character corresponds to a nucleotide
rather than a domain. Owing to unintended binding between non-complementary domains, sequence-level conformations may be quite different from thedesigned
domain-level conformation. Illustrated is hairpin formation in a strand that is intended to have no structure, and an intermediate of branch migration in which the
tails have a spurious interaction and a helix end frays. (d) At the sequence level, additional interactions are possible due to partial binding between complementary
and non-complementary domains. Illustrated is anunproductive reaction that involves fleeting spurious binding between domains that are not designed to be
complementary.
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While it is possible to collect sequence-level data
through tools like NUPACK [45] and Multistrand [48], a
naive brute-force approach of simulating an entire system
is usually too slow and inefficient for anything other than
simple DNA strand-displacement systems. A reasonable
simplification is to simulate only parts of the system at a
time; to make this idea effective, the simulations must be
chosen intelligently so that data about the complete
system can be inferred from data on its components. In
the subsequent sections, we show that domain-level analy-
sis can provide a ‘sketch’ of system behaviour appropriate
for this guided analysis.

3. Methods
In this paper, we describe a two-part framework for performing
probabilistic sequence-level verification based on a comparison
between domain- and sequence-level analyses. Reaction enumer-
ation and condensation at the domain level produce a
description of the expected resting macrostates and resting
macrostate reactions. We can verify the sequence-level system
by checking that the enumerated domain-level resting macro-
states adopt expected conformations and the condensed
reactions occur at appropriate rates. In addition, other

unenumerated complexes and reactions must not occur at
levels significant enough to affect system function.

The subsections that follow describe this approach in detail.
Section 3.1 provides the definitions of the DNA system com-
ponents used by KinDA. Section 3.2 lists the particular
software tools used by KinDA and the relevant features they
provide. The remainder of §3 describes in detail how KinDA
relates domain- and sequence-level system constructs and
how relevant system parameters are estimated via stochastic
simulation.

3.1. Basic definitions
We consider DNA systems at three levels of granularity: the
sequence level, where each DNA component is specified with
particular nucleotide sequences; the domain level, where each
DNA component is specified with domains and without regard
to nucleotide sequence and the strand level, where each DNA
component is considered without regard to secondary structure.

Definition 3.1. At the domain and strand levels, a domain is
defined by an identifier and a positive integer specifying the
domain length in nucleotides. At the sequence level, a domain
is defined by its identifier and a sequence of bases (b1, b2, . . .,
bn), n � 1, where each bi [ fA, T, C, Gg. The sequence of a
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Figure 2.Overview of domain-level system analysis via reaction enumeration. (a) An entropy-driven catalytic circuit described by Zhanget al.[7], showing the full
set of enumerated reactions. Note that dissociation reactions that involve breaking a bound short domain are reversible, while dissociation reactions will be treated as
irreversible if completing the strand displacement leaves no exposed toeholds for the reverse reaction. (b) Example of a resting macrostate consisting of a complex
with three secondary structures that can freely interconvert. Throughout this paper, we use rounded rectangles to indicate resting macrostates of one or more
complex conformations. (c) Some systems contain distinct domain-level resting macrostates equivalent to the same strand-level complex, but no fast pathways
for interconversion. KinDA is not well-suited to analysing these systems. (d) Reaction condensation describes system behaviour through reactions between resting
macrostates, rather than specific conformations. This change incorporates the separation of timescales assumption, and almost always simplifiesthe reaction network
significantly. Note that the final reaction producing INPUT, OUTPUT and WASTE is shown as irreversible because timescale separation precludes the possibility of
trimolecular reactions.
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domain’s complement is determined by Watson–Crick base
pairing.

Definition 3.2. A strand is defined by an identifier and a sequence
of domains (d1, d2, . . ., dn), n � 1, ordered from 50 to 30 ends.4

Definition 3.3. A secondary structure or conformation describes
how a sequence of connected DNA strands are bound to each
other. At the domain level, each domain is either completely
unbound or completely bound to exactly one complementary
domain. At the sequence level, each nucleotide is either unbound
or bound to a single complementary nucleotide (i.e. Watson–
Crick complement or G-T wobble pair). 5 At the strand level,
secondary structure is not considered.

Definition 3.4. At both the domain and sequence levels, acomplex
is defined by an identifier, a sequence of strands (s1, s2, . . ., sn),
n � 1, and a secondary structure. At the strand level, a complex
is defined by its identifier and strands but lacks a particular
secondary structure.6

Definition 3.5. A reaction is defined by two multisets of
complexes, written as

A1 þ A2 þ � � �!
k

P1 þ P2 þ � � �

or, simply,

A!k P

for reactant multiset A ¼ {jA1, A2, . . . j}, product multiset
P ¼ {jP1, P2, . . . j}, and rate constant k.

The remainder of this section describes features at the
domain and strand levels. Because reaction enumeration is rarely
feasible at the sequence level, these features do not apply to
sequence-level systems.

At the domain level, reaction enumeration produces reactions
of the following types: two complementary unbound domains
bind to each other; two bound domains unbind from each
other;7 one or more unbound domains may each displace an
identical nearby bound domain via three-way branch migration,
or pairs of bound domains may exchange partners with nearby
identical pairs via four-way branch migration.

Definition 3.6. The detailed reactions of a domain-level system are
all reactions predicted by reaction enumeration. These may
involve complexes not explicitly specified in the system descrip-
tion, if these complexes were predicted by reaction enumeration.
Bimolecular reactions are classified asslow and unimolecular
reactions may be classified by the enumerator as eitherfast or
slow. The strand-level detailed reactions are found by converting
all reactions to strand-level equivalents and removing those
whose reactants and products are equal.

Definition 3.7. A domain-level resting macrostate or resting set is a
set of domain-level complexes strongly connected by fast reac-
tions with no outgoing fast reactions. A resting complex refers to
any complex within some resting macrostate. Any other complex is
termed a transient complex. At the strand level, a resting macrostate
contains only a single strand-level complex.

A resting macrostate will always be stable on the timescale of
the fast reactions, with each constituent resting complex having
an equilibrium relative concentration. By contrast, transient com-
plexes have at least one outgoing fast reaction that leads toward a
resting macrostate, and thus they will vanish quickly via one of
these reactions. Note that all complexes within a resting

macrostate will have the same set of strands, in the same order,
so it is sometimes instructive to refer to a resting macrostate as
a set of secondary structures over the same strands. In fact, in
cases of interest for analysis by KinDA, there is at most one
resting macrostate per strand-level complex.

Definition 3.8. The reaction subnetwork for multiset of resting
macrostatesA ¼ {jA1, A2, . . . j} is the subset of detailed reactions
consisting of the slow reactions possible with the members ofA
and the fast reactions possible after any such slow reaction or
subsequent fast reactions. Throughout this paper, A contains
one or two resting macrostates.

Definition 3.9. The condensed reactions or resting macrostate reac-
tions are the reactions produced by reaction condensation (see
§2.2 and [38]). Each condensed reaction has reactant and product
multisets consisting of resting macrostates rather than complexes.

3.2. Software dependencies
Our methods rely on three types of analyses: reaction enumer-
ation at the domain level and thermodynamic and kinetic
analyses at the sequence level. Although KinDA currently
relies on the following three packages, it is reasonable to expect
that our framework could be adapted to use any tool satisfying
a few basic assumptions.

For domain-level reaction enumeration, we use the Pepper-
corn enumerator [38] because it considers a general, widely
used class of DNA complexes—arbitrary, non-pseudoknotted,
multistranded complexes—and it provides both a detailed and
a condensed reaction network. We anticipate that the KinDA
framework could be used with other enumerators so long as
the detailed reactions consist of slow bimolecular reactions and
fast and slow unimolecular reactions.

For sequence-level thermodynamic analysis, we use the
Nucleic Acids Package (NUPACK) [45]. NUPACK allows the
sampling of arbitrary unpseudoknotted secondary structures
from the equilibrium Boltzmann distribution of conformations
possible for a given strand-level complex. This capability is
used to estimate the probability of a resting macrostate being
well formed.

For sequence-level kinetic analysis, we use Multistrand [48]
to produce stochastic elementary step simulations of reaction
trajectories between DNA complexes. Multistrand provides a
special simulation mode called ‘First Step Mode’ (FSM). FSM
simulations break the reaction trajectory into two parts: the
initial binding step and the folding trajectory that follows,
with any particular simulation containing separate data on
both steps. The initial binding step occurs between a pair of
unbound nucleotides that have the potential to form a base
pair, one from each of the initial molecules, whose states are
Boltzmann sampled. The rate of this step is estimated from
the number of different such pairs that could form in the initial
state. The subsequent folding trajectory step is simulated until
any of a set of predetermined stop states has been reached;
stop conditions are specified as a set of sequence-level com-
plexes that must be present. This mode is well suited to
simulations at low concentrations, when separate complexes
will adopt their equilibrium Boltzmann distributions prior to
interacting with each other.

3.3. Relating domain-level and sequence-level resting
macrostates and secondary structure

Sequence-level interactions may not have direct counterparts
in the domain-level system. For instance, sequence-level

rsif.royalsocietypublishing.org
J.

R
.

S
oc.

Interface
15:

20180107

5



conformations may differ from domain-level conformations in
ways that may or may not change the behaviour of the complex
(figure 3a). Similarly, sequence-level and domain-level reaction
trajectories may differ even when no undesired behaviour
occurs. For instance, as in figure 3b, simultaneous branch
migration on different parts of a complex will produce
sequence-level trajectories with intermediates quite different
from domain-level predictions. In this and the following sec-
tion, we develop a precise relationship between secondary
structures and reaction pathways at the sequence and domain
levels.

To determine whether a sequence-level complex belongs to a
domain-level resting macrostate, we first assume that no two dis-
tinct domain-level resting macrostates share the same ordered list
of strands up to circular permutation. At the sequence level, this
is equivalent to assuming that there are no significant kinetic bar-
riers between different low-energy conformations of the
corresponding strand-level complex. This assumption implies
that the sequence-level conformations observed on a complex
composed of these strands will follow the equilibrium Boltz-
mann distribution. Although many DNA systems satisfy this
assumption, those that do not (e.g. figure 2c) should be analysed
by this framework with caution.

Of particular interest is the probability that a sequence-level
complex will adopt a conformation similar to expected domain-
level complexes. To make this notion precise, we associate each
domain-level conformation with a set of functionally similar
sequence-level conformations. The following definitions are
motivated by the fact that the domains in a complex represent
the smallest functional units of the molecule. If all domains in
a sequence-level secondary structure are bound in approxi-
mately the same manner as a domain-level secondary
structure, then it is reasonable to expect that a sequence-level
complex with that conformation will function similar to the
domain-level complex.

Definition 3.10. A sequence-level secondary structureTs is a
p-approximation of domain-level secondary structure Td if they
share the same ordered strands (up to circular permutation)
and, for every domain in each strand, the fraction of nucleotides
in Ts that are unbound or bound to the same targets as in Td is
greater than or equal to p, which is a fraction between 0 and 1.

Definition 3.11. A sequence-level secondary structure Ts is
p-spurious if it is not a p-approximation for any domain-level
secondary structure in the domain-level system specification.
Otherwise, we say Ts is well-formed when the value of p is clear
from context.

Figure 4a,b shows the application of definition 3.10 to par-
ticular sequence-level secondary structures. Note that the value
of p is specific to the particular system and application, and the
user is responsible for choosing a value of p that accounts for
the sensitivity of the resting macrostate to non-ideal domain be-
haviour. Using p . 0.5 is recommended, as in that case a given
sequence-level complex can be ap-approximation of at most
one domain-level resting macrostate. As a general rule, a reason-
able p may be 0.51 to ensure that three-way branch migration
domains, which will often exhibit partial migration, are not
classified as spurious. If leak reactions are of particular concern,
a higher p may be necessary to recognize the opening of single
base pairs in a double-stranded region.

Figure 4c demonstrates the effect ofp on the probability that a
sampled secondary structure will not be p-spurious for the resting
macrostates in the entropy-driven catalyst system (figure 2d).
Increases inp lower the probability of being well formed because
higher p represents a more restrictive condition on approximating
a domain-level conformation. This system, which lacks active
branch migration domains in the resting macrostates, retains
reasonably well-formed resting macrostates for p � 0.77. The
process of computing these probabilities is described in §3.5.1.
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3.4. Relating domain-level and sequence-level reaction
pathways and reaction rates

When designing and analysing sequence-level reaction path-
ways, we consider the following augmented model for the
interactions between one or two resting macrostates, building
on the approach developed in [48]:

Definition 3.12. The first-step model for multiset of resting
macrostatesA is the set of all reaction pairs Ri of the form

Ri : A�!
ki

1 Ai�!
ki

2 Pi,

where eachPi ¼ {jPi
1, Pi

2, . . . j} is the ith multiset of possible final
product resting macrostates resulting from a domain-level reac-
tion pathway beginning with A. The reaction pair with P0 ¼ A
is termed the unproductive reaction and is always included if A
has two or more reactants.8 Reactions with Pi, i ¼ 1, 2,. . . , are
termed productive reactions. In addition, a spurious reaction Rs is
included of the form

Rs : A�!
ks

1 As�!
ks

2 Ps:

For brevity, we often refer to reaction pairs in shorthand as a
single reaction9

R : A! P:

When estimating rate constants or performing standard mass-
action chemical kinetics simulations, the two steps are considered
separately.

The first-step model separates each reaction into two steps.
For bimolecular reactions, these can be intuitively understood
as modelling an initial bimolecular interaction followed by a
unimolecular reconfiguration, which allows both the reaction

rate’s concentration dependence and the reaction’s temporal
extent to be explicitly modelled. For unimolecular reactions, the
ki

1 and ki
2 determine the rate of initiating the reaction and how

long it takes to complete, respectively. The intermediatesAi rep-
resent a coarse-graining of trajectories through intermediate
complexes based on the final product setPi they are destined
to reach. They do not refer to particular complexes or macrostates
themselves. See [48] for a discussion of this treatment ofAi and
its implications.

When analysing the reactions of the first-step model ofA, we
consider simulated trajectories beginning with a single copy of
each element ofA. While any simulated trajectory will, given
enough time, reach one of the expected product statesPi, it is
important to identify when a simulated trajectory deviates sig-
nificantly from the expected enumerated reaction pathways.
Such trajectories should correspond to the spurious reactionRs

rather than any of the Ri. To understand the difficulty of deter-
mining this deviation, consider the reaction in the Zhang et al.
system [7] shown in figure 3b. Existing domain-level reaction
enumerators will predict the branch migration of each domain
to happen sequentially, with the branch migration completing
on one side before beginning on the other. However, at the
sequence level, these branch migrations usually happen simul-
taneously, so that a well-behaved simulated trajectory will not
directly match any domain-level reaction pathways to the final
state. For this reason, we instead use the strand-level reaction
subnetwork, which provides a level of detail intermediate
between the domain-level subnetwork and the condensed reac-
tions.10 Figure 5a,b shows a domain-level reaction subnetwork
and the corresponding strand-level reaction subnetwork.

Definition 3.13. At the sequence level, a reaction trajectory
beginning with multiset of resting macrostates A is spurious if

(a)
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INTERMEDIATE (I)
OUTPUT (OB)
SIGNAL (SB)
WASTE (W)0

value of p
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Figure 4.Correspondence between sequence-level and domain-level secondary structure. (a) Examples of sequence-level conformations that arep-approximations of
a domain-level conformation. This example uses a value ofp¼ 0.8 so that each instance of domain 2, which is eight nucleotides long, may have at most one
nucleotide incorrectly bound. Note that the toehold domain 1 has only three nucleotides, so it may not have any nucleotides incorrectly bound with this value ofp.
(b) To determine whether a secondary structure is ap-approximation, we calculate the fraction of correctly bound nucleotides (red text) in each domain. To be
considered ap-approximation, this fraction must be greater than or equal topfor every domain. In this case, the sampled structure would be ap-approximation for
anyp� 2

3. (c) Effect ofp on the probability that a sampled sequence-level conformation will be well formed, for all resting macrostates in the entropy-driven
catalyst system (figure 2d) for the experimental DNA sequences, at a temperature of 258C and [Naþ] ¼ 1 M (cf. figure 7).
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it forms a multiset of strand-level complexes not possible by
following reactions in the strand-level reaction subnetwork
before reaching one of the non-spurious product multisets Pi.
Otherwise, the trajectory is compatible.

Definition 3.13 classifies a reaction trajectory based on each
observed strand-level ‘state of the simulation box’ (i.e. the multi-
set of strand-level complexes in a reaction trajectory at a given
time point). Observing a strand-level state not reachable via the
strand-level reaction subnetwork indicates that an unexpected
dissociation event has occurred.11 We consider these trajectories
spurious even if the trajectory were to later rejoin an expected
reaction pathway, because they do not correspond to the behav-
iour predicted at the domain level. For this reason, these
trajectories are undesirable from the perspective of confirming
that the system’s behaviour matches domain-level predictions.

Each stochastic simulation halts as soon as the trajectory
can be classified as either spurious or compatible, as identified
by the methods discussed below. The complexes in the initial
and non-spurious final states of compatible trajectories have a
direct correspondence to resting macrostates in the domain-
level model. The following simulation modes allow the user to
adjust how closely each sequence-level complex must resemble
its corresponding resting macrostate.

Definition 3.14. In ordered-complex mode, simulations use only
the strand-level reactants and products to determine initial
and final states of the reaction trajectory. Initial states are
sampled from the Boltzmann distribution of secondary struc-
tures possible for the given strand-level reactant and the
simulation halts as soon as the strand-level elements of some
Pi are produced. In count-by-domain mode, the initial states are
sampled from the Boltzmann distribution of conformations for
the same strand-level complex, with the condition that the con-
formation is a p-approximation of one of the domain-level
conformations. Simulations halt when the product secondary
structures satisfy this same condition. In count-by-complex
mode, the initial and final states are similarly restricted but
with the fractional defect computed over the entire complex,
rather than for each domain.

In most cases, ordered-complex mode is sufficient to
achieve good rate estimates. The additional modes are slower
to simulate because they require more involved checking of
the system state at every time step, so are only recommended
when necessary. In particular, count-by-complex mode is pro-
vided as a less accurate version of count-by-domain mode to
reduce compute times. Note that the initial and final states of
a trajectory may be configured with different modes. The

(a)

(c) (d)

(b)

S1:S2:S4 S3

S1:S2:S3:S4

S1:S3:S4 S2
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S2:S3 + S4:S1

S3

S1:S2:S3:S4

S1:S3:S4 S2

S1:S2:S4

S1:S3:S2:S4
S1:S2:S4:S3

S1 + S2:S4:S3
S4 + S1:S3:S2
S2 + S1:S4:S3
S1:S3 + S2:S4

COMPATIBLE SPURIOUS
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S4 + S1:S3:S2
S2 + S1:S4:S3
S1 + S2:S3:S4
S4 + S1:S2:S3
S1:S2 + S3:S4
S1:S3 + S2:S4
S2:S3 + S4:S1

S1:S2:S4 + S3
S1:S3:S4 + S2
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43654
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= S2436

Figure 5.Automatic determination of stop states between two resting macrostates for the entropy-driven catalyst described by Zhanget al.[7]. (a) The domain-
level reaction subnetwork between resting macrostatesSandC. Note that these resting macrostates each have only one conformation, and that the final reaction is
shown as irreversible because the reverse reaction is not part of this reaction subnetwork. (b) Strand-level reaction subnetwork between resting macrostatesSandC.
The strands are labelledS1,S2,S3 andS4. Observe that the two intermediate domain-level complexes are conflated into a single strand-level complex because these
complexes differ only in secondary structure and not in strand order. (c) The spurious stop states are automatically determined by accounting for improper dis-
sociation after some bimolecular binding step. For every predicted strand-level state of the simulation box, each strand-level complex after the initial binding event is
considered as a candidate (grey) for improper dissociation. A dissociation event partitions the ordered strands of a complex into two separate lists, and all such
partitions that lead to strand-level states not reachable via enumerated strand-level pathways are included as spurious stop states (red). Note that improper binding
producing an unenumerated strand-level complex is not considered spurious unless the complex dissociates into an unenumerated form. If the complexdissociates
into the original reactants, this is instead classified as unproductive. For unimolecular spurious stop states, no initial binding step is considered, and all dissociation
events producing unexpected strand-level simulation states are included as spurious stop states. (d) Final list of compatible and spurious stop states.
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implications of these three modes are explored in the Groves
et al. case study (§4.4).

To identify spurious trajectories, KinDA automatically deter-
mines a minimal set of strand-level states as ‘stop states’ for the
stochastic simulator. Figure 5c,d shows the process of determin-
ing the stop states for a selected reaction from the Zhanget al.
system [7]. In each spurious stop state, the complexes have no
relationship to domain-level resting macrostates, so the modes
in definition 3.14 do not apply. These halting conditions
effectively always apply ordered-complex mode.

Note that although the spurious first-step model product Ps

conflates all possible product multisets formed by a spurious tra-
jectory, the particular unexpected strand-level complexes
formed, as well as separatek1 and k2 rate constants for their for-
mation, are available to the user to help debug the reason for
their occurrence, for instance using domain-level-agnostic tools
such as NUPACK or Multistrand. Because these complexes lack
a domain-level description of their behaviour, KinDA is not
well equipped to characterize their properties directly.

The following definition describes the correspondence
between simulated reaction trajectories beginning with A and
the reactions of the first-step model for A. Note that each trajectory
corresponds to at most one first-step model reaction.12

Definition 3.15. Consider non-spurious reaction Ri in the first-
step model for A, with final products Pi. A compatible reaction
trajectory corresponds to Ri if the trajectory begins with A and
ends with Pi. A spurious reaction trajectory corresponds to Rs,
the spurious reaction.

A complete characterization of the first-step model reactions
includes estimates for the rate constantski

1 and ki
2 (see §3.5). The

full set of productive, unproductive, and spurious reactions and
their rate constants, which we may call the first-step CRN, are
intended to be suitable for simulation by any off-the-shelf CRN
simulator (e.g. [53]; in this paper, we use the simulator provided
with the Nuskell compiler [42]) according to standard mass-
action chemical kinetics using either discrete stochastic (Gillespie,
continuous-time Markov chain) semantics [54] or continuous
deterministic (ordinary differential equation, ODE) semantics
[55]. In this way, simulations of the first-step CRN allow us to
examine the predicted behaviour of the system when more
than one copy of each species may be present, or when given
concentrations of each species are specified. Note that although
every reaction in the first-step CRN has a non-zero probability
of occurring as a Multistrand simulation trajectory, the prob-
ability may be extraordinarily small—so when an insufficient
number of stochastic simulations in Multistrand are performed,
no such trajectories may be observed. In this case, KinDA’s
rate constant estimate are informed only by the number of
attempted trials and may be extreme overestimates; thus, reac-
tions with no observed corresponding trajectories may (and
perhaps should) be omitted from simulations.

3.5. Estimating system parameters
This section describes how, after sequence assignment, the par-
ameters of the sequence-level system can be estimated from
simulation data to determine if the system behaviour will
match domain-level predictions. We estimate two features of
the sequence-level system:

(1) For each domain-level resting macrostate, theconformation
probabilities (i.e. the likelihood that a corresponding
sequence-level structure will adopt a p-approximation of
each domain-level conformation, for a user-provided value
of p).

(2) For each first-step model reaction, the reaction ratesk1 and k2

(using no extra parameters for ordered-complex mode, but
using a user-provided value p0 for count-by-domain and
count-by-complex modes).

For each parameter, KinDA’s user interface allows the user to
specify a desired precision of the result, and sampling or simu-
lations are performed as needed to achieve that result; as a
consequence, KinDA requires useable error estimates even in
the early stages before any successful cases have been observed,
and when few have been observed.

3.5.1. Estimating conformation probabilities
Recall our assumption that the sequence-level conformations
adopted by the strands in a resting macrostate follow the equili-
brium Boltzmann distribution (§3.3). Given a resting macrostate
and its predicted domain-level conformations, we apply this
assumption to estimate the probability of a sequence-level sec-
ondary structure being a p-approximation of each predicted
conformation and of being spurious.

Using dynamic programming, the probability of adopting
any sequence-level conformation satisfying certain constraints
can be computed explicitly in O(n3) time, where these con-
straints take the form of particular base pairs being bound
or unbound, while other base pairs are allowed to vary [56].
However, the definition of a p-approximation describes a
different type of constraint not covered by this algorithm.
Instead, we estimate conformation probabilities by empiri-
cally sampling sequence-level secondary structures from the
Boltzmann distribution using NUPACK [45]. Each secondary
structure in a set of samples can be classified asp-spurious or
a p-approximation of at least one of the expected domain-
level secondary structures. Note that if p � 0.5, a particular
sampled sequence-level secondary structure may match mul-
tiple domain-level secondary structures, so we will always
use p . 0.5.

Let N denote the total number of samples collected and Ni

denote the number of samples that are a p-approximation of
the ith domain-level conformation. pi is the true probability of
the ith conformation, and p̂i is our estimate of this probability.
We use i ¼ s to refer to the corresponding values for the spurious
conformation. Note that for a given N and i, Ni is a binomial
random variable Ni � binomial( N, pi).

3.5.1.1. Estimation ofpi
A naive approach to estimating pi might be to calculate the maxi-
mum-likelihood estimate (MLE) for the probability; from basic
statistics, this estimate is p̂MLE

i ¼ Ni=N. However, this approxi-
mation may be misleading: for example, when Ni ¼ 0 we get
p̂MLE

i ¼ 0. That is, the conformation probability is estimated
equal to zero, despite the fact that the secondary structure may
clearly be possible. As we will show, this situation also makes
it difficult to determine the error on the estimate.

Instead, we use the Bayesian estimate of the expectation of
the conformation probability given N and Ni. Using a uniform
prior distribution on pi, the expectation is exactly

p̂i ¼ E[pijdata] ¼ Ni þ 1
N þ 2

: (3:1)

3.5.1.2. Error estimation forpi
Error estimation using maximum-likelihood methods may also
be misleading. The maximum-likelihood estimate is

ŝMLE
pi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂MLE

i (1� p̂MLE
i )

N

s
:
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When Ni ¼ 0 or 1, ŝMLE
pi
¼ 0, which is clearly inaccurate. Without

a more suitable error estimate, we cannot judge our confidence in
the result or determine whether additional samples should be
drawn.

We instead measure the spread in the possible values ofpi

with the standard deviation of its posterior distribution given
N and Ni, calculated using Bayesian inference

ŝ pi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂i(1� p̂i)

N þ 3

r
: (3:2)

Derivations for equations (3.1) and (3.2) can be found in
electronic supplementary material, appendices A.1 and A.2.

3.5.2. Estimating reaction rates (bimolecular reactions)
In the paragraphs that follow, it is helpful to note that a given
Multistrand simulated trajectory is not representative of a trajec-
tory sampled from all collisions that would occur in a test tube.
Multistrand FSM trajectories are reactions between single copies
of A and B with initial states of A and B chosen from the Boltz-
mann distribution of possible conformations of each macrostate,
with the first step of the trajectory being a bimolecular interaction
forming a base pair between A and B. The distribution over tra-
jectories sampled this way is referred to in the rest of this
discussion as the FSM distribution. By contrast, a trajectory
sampled from the distribution of all test-tube collisions is consist-
ent with the chemical master equation (CME), and will be
weighted by an associated rate constant. This distribution is
referred to as the CME distribution. Expectations taken over
one or the other distribution may differ; where ambiguous, we
will specify which of these distributions we are using.

Consider the interactions between any two resting macro-
states A and B. Each simulated reaction trajectory between A
and B corresponds to a single reaction in the first-step model,
except when the sampled conformations do not allow an
immediate bimolecular step. Multistrand reports two values for
each trajectory that are of use to us:kcoll, the rate constant for
the bimolecular collision between the sampled conformations
of A and of B; and t2, the time taken to complete the unimolecu-
lar step [48]. Here, we generalize methods from [48] to combine
these observations into a single estimate ofki

1 and ki
2 for each

reaction

Ri : Aþ B�!
ki

1 ABi�!
ki

2 Pi:

For the following discussion, N denotes the total number of
simulated FSM trajectories between A and B, and Ni denotes
the number of these trajectories corresponding to reactionRi.
The N trajectories are indexed with a variable n ¼ 1, . . ., N.
Each trajectory is characterized by the binary values Sn

i , which
is 1 if and only if the nth trajectory corresponds to reaction Ri,
and kn

coll and tn
2, which are the values reported by Multistrand

for the nth trajectory. Trajectories with no initial step have all
Sn

i ¼ 0.

3.5.2.1. Estimation ofk1
For reaction Ri, we estimate ki

1 using a Bayesian approach.ki
1 is

defined as the rate constant for collisions betweenA and B in a
test tube that ultimately lead to products Pi. This is equivalent
to the following:

ki
1 ¼ pikcoll,i ¼ E[Sn

i ]�kcoll,i ¼ E[Sn
i kn

coll ], (3:3)

where pi ¼ E[Sn
i ] is the probability that a trajectory sampled from

the FSM distribution will have Sn
i ¼ 1 and kcoll,i is the expectation

of kn
coll taken over only these trajectories with Sn

i ¼ 1.

Using the expectation of ki
1 given the data as our estimate, we

have the following formula for k̂i
1:

k̂i
1 ¼ E[ki

1jdata] ¼
P

Sn
i ¼1 kn

coll

N þ 2
, (3:4)

where to simplify the calculation we make the assumption
that pi and kcoll,i are independent random variables, with pi

having a uniform prior on [0, 1] and kcoll,i having prior
P(kcoll,i)/ 1=(kcoll,i)

3.

3.5.2.2. Error estimation fork1
We estimate the error on ki

1 with the following equation for the
standard deviation of the posterior distribution of ki

1 given the
observed trajectories:

ŝki
1
¼ k̂i

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N �Ni þ 1

Ni(N þ 3)

s
: (3:5)

3.5.2.3. Estimation ofk2
When estimating ki

2 for reaction Ri, we make the simplifying
assumption that the unimolecular step times tn

2 for reaction tra-
jectories corresponding to Ri are drawn from a distribution
with mean 1=ki

2, where this mean is taken over trajectories fol-
lowing the CME distribution. We use the following estimator
for ki

2:

k̂i
2 ¼

P
Sn

i ¼1 kn
collP

Sn
i ¼1 kn

collt
n
2
: (3:6)

3.5.2.4. Error estimation fork2
The standard deviation of the expected unimolecular reaction
time t2,i is calculated using equation (3.6), above, which rep-
resents a weighted sum of the simulated reaction times tn

2 over
successful trajectories. Using the inversely proportional relation-
ship between ki

2 and the t2,i, we can derive an estimate for the
standard deviation of the estimate for ki

2 to be

ŝki
2
¼ (k̂i

2)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Sn
i ¼1 kn

coll tn
2 �

1

k̂i
2

 !2

(Ni,eff � 1)
P

Sn
i ¼1 kn

coll

vuuuuut , (3:7)

where

Ni,eff ¼
P

Sn
i ¼1 kn

coll

� �2

P
Sn

i ¼1 (kn
coll )

2 :

Derivations for equations (3.4) and (3.5) are found in elec-
tronic supplementary material, appendices A.3 and A.4,
respectively. Equation (3.6) is generalized from the derivation
in [48] for reactants with a single productive reaction.
Equation (3.7) is derived in electronic supplementary material,
appendix A.5.

3.5.3. Estimating reaction rates (unimolecular reactions)
When slow unimolecular reactions are enumerated at the domain
level, the first-step model treats such reactions as two-step reac-
tion pathways with k1 and k2. For these reactions, KinDA uses
k1 to represent the probability of the reactant following a particu-
lar pathway and k2 to determine the time taken along the
pathway. Multistrand simulations for unimolecular first-step
model reactions do not use FSM. The following paragraphs
consider first-step model reaction Ri for resting macrostate
A. Trajectories are indexed by n ¼ 1, . . ., N and each has an
associated trajectory timetn

2.
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3.5.3.1. Estimation ofk1
When the first-step CRN is treated as a Markov chain, the
probability that resting macrostate A will produce Pi is

PA(i) ¼ ki
1P
j kj

1

where j [ fs, 1,. . . g. For ki
1� ki

2, the rate constant for the overall
reaction A! Pi is simply ki

2. KinDA estimates ki
1 by attempting

to enforce these two constraints.PA(i) is estimated with equation
(3.1), where Ni is the number of simulated trajectories
corresponding to Ri.

ki
1 ¼ kfastP̂A(i),

where kfast ¼ kscale�maxi {ki
2} enforces that ki

1� ki
2 while main-

taining the relative values of all k1 in the first-step model for A.
Any kscale may be used as long as it is large enough that the
time taken to generatePi is dominated by the second step.13

3.5.3.2. Error estimation fork1
Because the scale ofki

1 is not meaningful, we consider only the
error in P̂A(i), and report

ŝki
1
¼ kfastŝPA(i),

with kfast defined as before andŝPA(i) defined as in equation (3.2).

3.5.3.3. Estimation ofk2
Because we guarantee thatki

1� ki
2, the time taken to produce Pi

is determined only by ki
2. The average time to completion is

inversely proportional to the rate constant, so we have

k̂i
2 ¼

1
t2,i

where t2,i is the mean reaction time for reaction trajectories
corresponding to Ri.

3.5.3.4. Error estimation fork2
Following identical reasoning as for error estimation of k2 in the
bimolecular case, we have

ŝki
2
¼ (k̂i

2)2 � ŝt2,i ¼ (k̂i
2)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Sn

i ¼1 (tn
2 � 1=k̂i

2)2

Ni(Ni � 1)

vuut
,

where Sn
i ¼ 1 if and only if the nth trajectory corresponds to Ri.

3.6. Usage and interpretation of the analysis framework
The framework described in this paper can be used to judge the
sequences for a single component of a DNA circuit or for the cir-
cuit as a whole. For instance, if the interactions between a
particular pair of resting macrostates has been previously
found to be problematic, KinDA can analyse just these inter-
actions in isolation of the rest of the system with multiple
potential sequences to determine which sequences are most
probable to produce a functioning system. Once sequences are
chosen, the sequence-level system can be verified in its complete
form by estimating reaction rates for each reaction in the model.

Given reaction rate estimates, the behaviour of the system can
be judged by simulating standard mass-action chemical kinetics,
i.e. constructing mass-action differential equations from the
first-step model reactions and applying standard numerical ODE
solvers. Alternatively, KinDA computes scoring metrics for certain
components of the system, as well as for the system overall.

For each resting macrostate in a system, KinDA can compute
a bound on the temporary depletion of this resting macrostate due

to time potentially spent undergoing unproductive reactions.
This metric is computed at three levels of detail. Each metric
assumes a user-provided maximum concentration cA for every
resting macrostate A and provides an upper bound on the tem-
porary depletion assuming concentrations are fixed at this
level. For two resting macrostatesA and B, we bound the tempor-
ary depletion A due to the unproductive reaction between A and
B with aAB

aAB ¼
KABcB

1þ
P

A0 KAA0cA0
, (3:8)

where KAB ¼ k0
1=k0

2 is the association constant for the unproduc-
tive reaction between A and B, based on the rate constant
estimates from Multistrand FSM simulations. We similarly
bound the total temporary depletion of A due to all unproductive
reactions involving A with aA

aA ¼
P

A0 KAA0cA0

1þ
P

A0 KAA0cA0
: (3:9)

The system-level unproductive reaction scorea is the maximum
temporary depletion of any A

a ¼ max
A

{aA}: (3:10)

Note that these equations implicitly assume that unproductive
reactions are on a faster timescale than productive reactions.
While systems can be constructed for which this is not true,
this assumption generally holds in practice because unproduc-
tive reactions tend to consist of weak binding of mismatched
sequences and temporary binding by short toeholds, whereas
productive reactions involve additional branch migration steps.
Because these equations compute the depletion amount due to
a single set of maximum concentrations for each reactant, they
provide an upper bound on the level of depletion. While true
depletion levels will vary from the reported bounds, the total
depletion levels should remain below these bounds. In addition,
because these estimates are sensitive to the supplied maximum
concentrations, circuits for which maximum concentrations
cannot be found should not be judged by these scores.

KinDA also computes the permanent depletion of a resting
macrostate due to spurious reactions. Because the behaviour of
spurious products is beyond the scope of the domain-level
model and therefore considered unknown, we assume a resting
macrostate undergoing a spurious reaction becomes perma-
nently unusable. The fractional depletion rate of a resting
macrostate A due to a spurious reaction Rs with resting macro-
state B is bounded by cBks

1. The fractional depletion rate of
resting macrostate A due to all spurious reactions is bounded
(with some abuse of notation) by

bA ¼
X

A0
cA0ks

1, (3:11)

where each ks
1 is the bimolecular rate constant of the spurious

reaction between A and the relevant A0. The system-level spur-
ious reaction score is the maximum fractional depletion rate of
any resting macrostate A, or

b ¼ max
A

{bA}: (3:12)

If the user has desired parameter ranges for each productive reac-
tion rate in the system, these can also be used to manually
determine if the sequence-level system is well behaved. Because
this involves additional knowledge about the expected system
behaviour, KinDA does not automatically score this aspect of
the system.
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4. Results
4.1. Case study: entropy-driven catalyst
In this case study, we demonstrate the usage of KinDA to
gain broad information about the behaviour of an entire
DNA strand-displacement circuit. We perform a full analysis
of the entropy-driven catalyst [7] (figure 2 d), including every
resting macrostate and both productive and unproductive
reactions. Results are shown in figure 6.

Figure 6a shows the behaviour of each resting macrostate
and each productive reaction. The rate constants for each of
the three productive reactions indicate that the circuit is
likely to behave as designed. The reversible first step of the

catalytic cycle (C þ S! I þ SB) is strongly biased in the
forward direction because the k1 constants differ by two
orders of magnitude. The second step of the catalystic cycle
(I þ F! C þ OB þW) is also biased in the forward direction,
both because the k1 for the final entropy-driven reaction is
higher than that of the reverse of the first step and because a
high initial F concentration (1.3x)14 is used. The k2 rate for
this final step is the slowest of the three reactions; this is
likely because the spontaneous dissociation of 6-nt toehold 5
is relatively slow. 15 These sequences produce well-behaved
resting macrostates, each with high probability (more than
70%) of adopting an enumerated domain-level conformation
(for p-approximations with p ¼ 0.7) and with low temporary
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which the concentration ofCdetermines the rate ofOBproduction but not its final level. (e) Simulated reaction times for the first step of the catalytic cycle at 258C
and 608C. In this case, reaction times increasingly violate an exponential distribution at higher temperatures. Note that standard mass-action chemical kinetics
assumes exponentially distributed reaction times.
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depletion (less than 1.5%). While this behaviour holds at low
concentrations ofx¼ 10 nM (figure 6b), at higher concentrations
of x¼ 250 nM the temporary depletion reaches almost 30% for
the catalyst C (figure 6c), which would begin to affect overall
kinetics. This depletion is due to toehold occlusion by W (e.g.
[42]), whereby the shared toehold between these two complexes
effectively sequestersC when bound to W.

Figure 6d shows mass-action simulations of the full
system based on the KinDA-derived rate constants (see elec-
tronic supplementary material, table S2 for a full list). These
simulations demonstrate the catalytic circuit behaviour
observed by Zhang et al. [7], in which any amount of catalyst
C produces output OB with rate dependent on [ C ]. Rate
dependence on temperature of a single reaction is shown in
figure 6e, which shows that at high temperatures the reaction
times increasingly violate an exponential distribution.
This indicates that branch migration, a non-exponentially
distributed random walk process, becomes a more dominant
rate-determining step at high temperatures. Note that although
the qualitative circuit behaviour is correct, KinDA’s predicted
reaction rates differ from those observed experimentally by
roughly a factor of 4–6, as seen by circuit half-completion
times (electronic supplementary material, table S3). The
accuracy of the particular rates is highly dependent on
Multistrand’s kinetic model, which currently does not account
for important factors such as base-pair stacking at nicks. Future
improvements to Multistrand [57] will produce more accurate
timescale estimates by KinDA.

Despite the limitations of the current Multistrand kinetic
model, KinDA can provide important semi-quantitative
insights about DNA circuit performance under conditions
that were not yet experimentally investigated. Figure 7
shows an analysis of the Zhang et al. entropy-driven catalyst
[7] at different temperatures and different concentrations, as
well as comparison to systems with modified domain
sequences. By performing Multistrand simulations at differ-
ent temperatures, we can observe trends in system
performance measures (figure 7a). Notably, the bimolecular
rate constant k1 decreases with temperature for the reaction
with the longer toehold ( C þ S! I þ SB), has little tempera-
ture dependence for both reactions with the shorter toehold
(I þ F! C þ OB þW and I þ SB! C þ S), but increases
with temperature for the two ‘zero toehold’ leak reactions
(S þ F! L1þ SB and S þ F! L2þ OB)16, where L1 and L2
are KinDA-generated strand-level complexes corresponding
to these two leak pathways. By contrast, the unimolecular
step’s rate constant for the same reactions,k2, increases with
temperature in all cases.17 These trends can be understood
using a phenomenological model for toehold-mediated
strand displacement [58,59] in which an incoming strand,
A, binds to a toehold of length n on the substrate, B, to
form a complex, M, that may subsequently either complete
branch migration to produce X and Y or else dissociate
back into A and B:

Aþ BO
kf

kr

M!kb X þ Y:

All else being equal, one would expect kf to have little temp-
erature dependence, kb to scale with the speed of branch
migration, which in the Multistrand model requires a single
base pair to break and thus scales aseDGbp=RT, and kr to
scale with the rate of dissociation for a typical length n
duplex, which in the Multistrand model requires n base

pairs to break and thus scales asenDGbp=RT, where DGbp , 0
is the energy of formation for a single base pair. Phenomen-
ologically, kb 	 kr for the longer toehold at 258C. In this
model,

k1 ¼ kf
kb

kb þ kr
and k2 ¼ kb:

For longer toeholds, kb dominates kr at lower temperatures,
but kr has a stronger dependence on temperature thankb,
speeding up dramatically at high temperatures and thus
causing k1 to decrease as the fraction of successful collisions
drops. By contrast, for shorter (or absent) toeholds,kr domi-
nates kb at all temperatures, and thus k1 increases askr

decreases. As for the complexes themselves, KinDA’s
bound on temporary depletion was so low at the experimen-
tally demonstrated approximately 10 nM concentrations that
we performed calculations at 100 nM where temporary
depletion is more significant, and even then it becomes sig-
nificant only for C þW and only at low temperatures. At
all temperatures, there was an insignificant fraction of
poorly formed secondary structures, using the default 0.51-
approximation standard. Overall, this analysis suggests that
the sequences in Zhanget al. [7] were well designed.

The phenomenological model, used above to provide an
intuitive quantitative understanding of the temperature
dependence of reaction rate constants, relies on a number
of assumptions that may or may not hold, depending on
sequence quality. The sensitivity of the entropy-driven cata-
lyst design to sequence choices is made clear by KinDA’s
analysis of two variant systems with identical domain-
level structure but modified domain sequences. Figure 7b
considers a system where the four long domains have
been replaced by random sequences using all four nucleo-
tides, in contrast to the original sequences that (mostly)
consisted of just A, T and C—a choice intended to reduce
intramolecular secondary structure as well as spurious
interactions between single-stranded species. Indeed, the
fraction of well-formed complexes is considerably lower,
even with the forgiving 0.51-approximation standard.
Nevertheless, the rate constants for the three designed reac-
tions are quantitatively similar for the two designed
forward reactions, which are not much more than 10 times
slower, although the designed reverse reaction (which is
not essential for function) is up to 1000 times slower.
Orthogonally, figure 7 c considers a system where only the
two toehold sequences have been modified, intentionally
strengthening the shorter toehold while weakening the
longer toehold. Not only are the complexes now poorly
formed, with the catalyst C forming an unexpected hairpin
and the fuel F being depleted by dimerization (as confirmed
by NUPACK [45]), but now the initial reaction in the path-
way (Cþ S! I þ SB) is 2–4 orders of magnitude slower
than for the original sequences.

Altogether, for each design and each temperature, KinDA
used Multistrand to obtain rate constants for the three
intended reactions, two leak reactions and all 28 unproduc-
tive reactions. As each reaction is modelled with two
elementary steps (e.g.Aþ B!k1 C and C!k2 Dþ E), this results
in a formal CRN with 66 reactions that can be simulated
according to deterministic mass-action chemical kinetics to
study how the various factors interact to yield an observable,
such as the production of the output species. In figure 7d, we
examine the performance of an input catalyst with an initial
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relative concentration of 0.1x, i.e. one-tenth the initial concen-
tration of the substrate. For the experimental concentrations
(x ¼ 10 nM), increasing temperature slows down the original
design roughly twofold, presumably largely due to
Cþ S! I þ SB. The design with modified long domains, in
contrast, is overall slower, but speeds up by roughly twofold.
In both designs, leak accelerates at higher temperatures,
approaching parity with the designed pathways by 60 8C. In
the design with modified toeholds, no output is produced,
except through leak. An analogous set of CRN simulations,
but for higher concentrations (x ¼ 10mM), reveals dramati-
cally different phenomena: all designs have little output at
low temperatures, initially increasing with temperature for
the original and long-domain-modified designs. A natural

hypothesis would be that the slow behaviour at low tempera-
ture is due to spurious interactions (secondary structure or
temporary depletion) that are melted at higher temperatures.
At first, this seems consistent with simulations that systema-
tically increase concentrations: at 608C, the amount of output
produced is consistent with an effective bimolecular reaction,
while at 258C, less-than-expected output is produced at
higher concentrations where temporary depletion must
increase. Fortunately, representing the system as a CRN
allows us to test this hypothesis by ‘turning off’ the 28 unpro-
ductive reactions. Simulation of this reduced CRN, which by
construction has no temporary depletion, yields almost iden-
tical plots (data not shown), and points toward an alternative
hypothesis: that at high concentrations reaction the pathways

Zhang et al. [7] modified long domains modified short domains
(a) (b) (c) (d)
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Figure 7.Systematic analysis of the temperature, concentration, and sequence dependence of an entropy-driven catalyst. (a) Original sequences from Zhanget al.
[7]. Top plots show rate constants for the three desired reactions and two leak reactions, bottom plots show KinDA•s bound on temporary depletion for 100 nM
maximum concentrations of each species and KinDA•s thermodynamic estimate of the fraction of conformations that are valid 0.51-approximations of the domain-
level resting macrostates. See (b) and (c) for legends. (b) Sequences with modified branch migration domains, shown in red. (c) Sequences with modified toehold
domains, shown in magenta. (d) Simulations of the full set of reactions according to deterministic mass-action chemical kinetics using the rate constants determined
by KinDA. The CRNs considered the three desired reactions, two leak reactions and 28 unproductive reactions; reactions for which Multistrand did notencounter a
successful trajectory were omitted from the CRN for the relevant case. For standard concentrationx, the initial concentrations of species were
[C] ¼ 0:1x, [F] ¼ 1:3x, [S] ¼ 1:0x. To compensate for reactions being faster at higher concentrations, the final time of a given simulation was
tfinal¼ 15(10 nM=x) min. For each sequence design, the final fractions [OB]/xand [L]/xare plotted, where [L]¼ [L1]þ [L2] is the total concentration of spurious
leak complexes.
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becomes rate-limited by the unimolecular step of
I þ F!k2 CþOBþW, a hypothesis that can be easily
confirmed.

In summary, KinDA provides powerful tools for examin-
ing the sequence-dependence and temperature-dependence
of complex strand-displacement systems. By representing
the systems as CRNs, KinDA opens up the possibility of
extensive system-level analysis that sheds light both on
underlying biophysical principles and system-level consider-
ations. This understanding can help identify how specific
sequence-level choices can be used to optimize circuit
designs.

4.2. Case study: multiple desired pathways
The power of KinDA comes from its general-purpose formu-
lation and ability to automatically analyse DNA strand-
displacement circuits involving molecular complexes with
arbitrary non-pseudoknotted secondary structure. Why this
generality requires careful treatment of transient complexes,
resting macrostates, detailed and condensed network enu-
meration, and interactions with multiple possible outcomes
is well illustrated by the example shown in figure 8. Here,
we use KinDA to analyse a system adapted from [38] in
which two resting macrostates (A and B), may bind and fall
into one of two fates, P1 ¼ {jC, Dj} or P2 ¼ {jE, Fj} (figure
8a). Figure 8b shows the full condensed reaction graph.18

Sequence-level analysis of each pathway is required to
estimate which pathway, if any, is favoured. Explicitly, the
two pathways we will analyse here are

R1 : Aþ B! CþD
R2 : Aþ B! Eþ F:

We consider two sequence variants, one with s set to
weaker (AT-rich) sequencesw ¼ ATATAT and one with s set
to stronger (GC-rich) sequence ss¼ GCGCGC. Figure 8c,d
shows the sequences, theirk1 rate estimates, and the confor-
mation probabilities. While both reactions do occur with
the original sequences, the rate of reactionR2 is slower
than R1 by more than three orders of magnitude. To see
why, we can analyse the resting macrostate B in more
detail. B contains four resting complexes, two of which
favour following R1 and two of which favour R2. The confor-
mation probabilities for each resting complex are shown in
figure 8d, right. (Here, we relax our similarity requirement
to p-approximation with p ¼ 0.51, because with a higher
value of p many intermediates of branch migration would
be classified as spurious conformations, whereas domains
with partial branch migration will differ from an enumerated
conformation by at most 50% and thus most will be accepted
as a valid approximation when p ¼ 0.51.) Using weaker toe-
hold s ¼ sw, the total probability of either B1 or B2, which
favour R1, is about 10 times greater than that of B3 or B4.
The probabilities are an indicator of the bias of the system
towards one pathway, although they do not account for B
converting between its forms after A has bound and begun
branch migration.

Using the relationship between the conformation probabil-
ities and the relative favourabilities of R1 and R2, we can
attempt to redesign the sequences to alter the magnitude of
the system’s bias. Reasoning that one reason for the bias is
the open loop at the three-way intersection of the three strands,

which provides a strong entropic bias for certain confor-
mations, we might try to counteract this effect via the
strength of the toehold s. Figure 8d shows that, as expected,
using the stronger toehold sequences¼ ss weakens the bias
against R2, although pathway R1 is still favoured. This indi-
cates some limits to sequence design alone; however, with
reaction schemes that are highly sensitive to relative reaction
rates, the ability to tune these rates quickly provides an
important benefit.

4.3. Case study: mechanisms combining three-way and
four-way branch migration

KinDA can also be used to study DSD systems with complex
domain-level reaction pathways that include both three-way
and four-way branch migration. In figure 9, we simulate
sequence-level dynamics of a catalyst system presented by
Kotani & Hughes [12]. This system, shown in figure 9a, is
more robust against leakage reactions, but includes both
three-way and (generally slower) four-way branch-migration
reactions. Domain-level reaction enumeration reveals that the
two complexes S2 (the second substrate) andR (the reporter),
both initially present at high concentrations, can interact with
a 10 nt ‘toehold’, which is effectively irreversible. The result is
a new resting macrostate S2–R (figure 9b). The subsequent
depletion of the reporter complex can become a problem if
there are multiple competing pathways, but as we can see
in figure 9c the qualitative dynamics of the catalyst system
in isolation is not affected. Note that k1 for the formation of
S2–R is an order of magnitude faster than the fastest
intended reaction, emphasizing the dominance of this reac-
tion pathway; the k2 rate constant is even more exceptional,
reflecting that this pathway just requires zippering of a
helix to complete, whereas the intended reactions require
some form of branch migration. On the other hand, the
results show that the ‘valid’ reaction P1þ I1! S1þ C1,
which was enumerated by Peppercorn but appropriately
not mentioned in [12], has an exceptionally small rate. The
given k1 value is only an estimated upper bound, as out of
5 million simulated trajectories starting with complexes
P1þ I1, none reached complexesS1þ C1.

The KinDA set-up for this system is as follows: we have
truncated the nucleotide sequence of the reporter complex
so that domain d1s is 2 nt shorter on its 5’ end than d1
used in [12]. This simplified the system specification, as
d1s is used throughout the rest of the system. All other
sequences are the same as presented in the experimental
study (figure 9 d ). The simulation temperature is at 558C
(for experimental data at 258C, see [12]). Higher tempera-
tures make the simulation computationally feasible by
speeding up reactions, notably the toehold dissociation
events that often dictate the number of simulation steps
before success and the probability of success itself. While
it is difficult in general to infer DNA dynamics between
different temperatures, the effects on branch migration
with perfectly complementary sequences approximates the
experimentally observed qualitative system dynamics
reasonably well. The simulations use ordered-complex
simulation mode for all but the ‘unintended’ reaction
S2þ R!S2�R, whose simulations use the stricter count-
by-domain mode for reasons explained in the next section.
All rates have relative errors below 40%, with the exception
of the unobserved reverse reaction.
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4.4. Case study: binding reactions and macrostates
The modes ordered-complex, count-by-complex, and count-by-
domain (definition 3.14) modify the simulation stop con-
ditions used by Multistrand. The count-by-domain and
count-by-complex modes force the simulated complexes to
more closely resemble the expected products before a trajec-
tory halts. However, they increase compute time both
because more reaction steps must be simulated and because
at each step a more complex comparison is required to deter-
mine whether the simulation should halt. Using the system
of logic gates designed by Groves et al. [60] (figure 10a,b),
we can illustrate the effect of each mode on the rate estimates

and compute time. This system describes two logic gates
implementing OR and AND logic. In particular, the initial
step of the AND gate does not involve a dissociation step;
thus, simulations in ordered-complex mode will halt
immediately after the two reactants initially bind. This
hides the fact that, in many cases, the two complexes will
immediately dissociate after binding without ever perform-
ing the subsequent four-way branch migration. By contrast,
the second step of the AND gate and both steps of the OR
gate involve dissociation steps and are not subject to this
complication. Sequences are taken from Table S3 of [60]
and shown in figure 10 c.
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Figure 8.Analysis of a system with two intended condensed reactions occurring in parallel. (a) The detailed domain-level reaction subnetwork between complexes
in resting macrostatesAandB, enumerated by Peppercorn. Three product multisets are possible:fjC, Djg, fjE, Fjg andfjA, Bjg. The full reaction network (not
shown) contains 269 complexes and 1660 reactions. (b) Complete condensed reaction network (top), which includes additional reactions involving an unexpected
enumerated resting macrostateG. Gis produced only by reactions involving the products of the desired pathways (C, DandF). (c) Sequences used for this case study.
Except for domains, sequences were randomly generated from a four-letter alphabet. (d) Bimolecular rate constantk1 for the original and modified system.
Althoughk2

1 is extremely low relative tok1
1 in the original system, increasing the toehold strength significantly reduces the difference betweenk1
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1. The

conformation probabilities (right) correlate withk1 values for each pathway. This is expected behaviour because conformationsB1 andB2 more easily follow
R1 whileB3 andB4 more easily followR2. Conformation probability error bars (not shown) are insignificant.
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Figure 10d shows the KinDA-derived rate estimates for k1

and k2 for each step of each gate. For the AND gate’s first
reaction, the k1 rate decreases by approximately a factor of
two from ordered-complex mode compared to the other
modes. This decrease is likely due to the lower probability
of successfully completing the reaction after binding. The k2

rate decreases dramatically as well because more reaction
time steps must be simulated to reach a state satisfied by
count-by-domain than by count-by-complex or ordered-com-
plex. The corresponding increase in compute time required
for this reaction (figure 10e) justifies the inclusion of
ordered-complex mode for cases when the improved accu-
racy of the other modes is not required. Importantly the
other reactions, which involve dissociation steps, produce
very similar rate estimates in each mode. This indicates that
ordered-complex mode is an appropriate approximation for
reactions of this type.

5. Conclusion
In designing DNA strand-displacement systems, a successful
system is generally highly dependent on having correct reac-
tion rates, which ultimately determine whether molecules
will take on the proper secondary structure and interact
with each other in the proper ways. In a domain-level
system, acceptable values of these rates are assigned to the
various domain-level reactions in the system without concern

for how to generate sequences that will achieve those rates.
Sequence design remains a difficult problem, despite decades
of work and significant advances [1,44,45,61,62], in part
because satisfying thermodynamic criteria has proven to be
computationally more tractable than satisfying kinetic cri-
teria, and the thermodynamic models are more accurate
than existing kinetic models, so that researchers interested
in controlling the kinetics of reactions are often left using
heuristics and special-case solutions [24,63,64].

The KinDA framework allows a researcher to estimate
important parameters of the sequence-level system, using a
general-purpose kinetics model that is continuing to improve,
and determine if the sequences chosen will result in a prop-
erly functioning system. These methods make it possible to
verify the kinetics resulting from a system’s sequence assign-
ments and find the source of potential problems to determine
where sequence changes are needed. Scores such as those
outlined in §3.6 allow automated judgement of sequence
quality.

This paper has shown how the KinDA framework may be
applied to a variety of non-trivial DNA circuits. In particular,
the framework was used to verify a sequence-level system’s
overall behaviour by estimating kinetics for a system’s reac-
tions and performing mass-action ODE simulations based
on the first-step CRN (§§4.1 and 4.3). The framework was
demonstrated in the context of complex domain-level
system architectures, such as macrostates with multiple
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Figure 9.KinDA analysis of a catalytic system presented in [12], which combines three-way and four-way branch migration, simulated here at 558C. (a) Domain-level
complexes and reaction arrows describing the intended dynamics of the system, as well as the sequence-level reaction rates calculated by KinDA. (b) An unintended
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conformations (§§4.2 and 4.3); macrostate collisions with
multiple potential fates (§4.2); macrostate interactions with
multiple pathways towards achieving a final set of products
(§§4.1–4.3); and reaction networks involving four-way and
remote-toehold branch migration steps (§§4.3 and 4.4). The
framework was also used to debug unexpected behaviour
not predicted at the domain level: for instance, identifying
productive reactions that are unacceptably slow, due to spur-
ious conformations or temporary depletion (§§4.1 and 4.2);
and discovering spurious reactions, such as leak pathways
(§4.1). Finally, this paper applied the framework to evaluate
the effect of different sequence choices, a basic and
fundamental sequence design challenge (§4.1).

It is important to note that the accuracy of these methods
is dependent on the accuracy of the underlying sequence-
level simulation software used. Improvements to software
like Multistrand to better match experimental data are
ongoing, and recent advances to the Multistrand’s rate
model (using a reduced and more tractable state space)
have allowed reaction rate estimates to be improved to
within a factor of 3 � for 78.5% of reactions in a comprehen-
sive study [57]. However, this study has noted shortcomings
to its model, such as failing to account for sequence-specific
rigidity differences in hairpin loops and the initiation
energy cost of branch migration. Future improvements to
Multistrand can easily be incorporated into KinDA with

few, if any, changes. Additional modifications are expected
to improve Multistrand’s ability to characterize rare events
efficiently, for example, by applying Markov chain methods
like forward flux [65], energy barrier estimation [66] and
finite state projection [67]. We are hopeful that future
advances in sequence-level simulation methods will improve
the efficacy of these methods.

KinDA may find utility as part of a fully automated
sequence design framework that accounts for kinetics as
well as thermodynamics. For instance, it could be integrated
into a pipeline that uses KinDA to verify potential sequence
assignments proposed by NUPACK’s thermodynamic
sequence design and verification capabilities. In the long
term, there is active research towards developing a nucleic
acid circuit design pipeline to generate complete sequence-
level system specifications by ‘compiling’ statements of
high-level circuit behaviour into the machine code of nucleic
acid computation. Compilers like Nuskell [42] require robust
sequence verification tools such as KinDA. We hope that
future work will apply our methods to continue to make
automated circuit design more tractable for complex systems.
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Endnotes
1This class of systems includes some that, despite the name, do not
make use of strand displacement.
2With user guidance, certain unimolecular reactions may also be
classified as slow, which is often necessary when reversible binding
intermediates are long-lived and should be available to react with
other complexes. This allows effectively trimolecular interactions,
such as those underlying ‘cooperative strand displacement’ [14], to
be modelled as a pathway involving bimolecular and unimolecular
reactions.
3Note that a resting macrostate is not a collection of interacting com-
plexes but rather a collection of different conformations of a single
complex that may readily convert to each other.
4Two strands with the same sequence of domains are distinct if they
have different identifiers. Thus, a modified strand (e.g. with a fluor-
ophore) is distinguishable from an unmodified strand with the same
domains.
5At both the domain and sequence levels, we only consider non-
pseudoknotted secondary structures, which have a well-nested dot-
parens-plus notation representation (i.e. assuming domains are num-
bered sequentially then if domains di and dj are bound, dk and dl are
bound, and i , k , j, then i , k , l , j or i , l , k , j).
6Strand-level complexes are equivalent to ordered complexes, as
defined by NUPACK [45]. In that work, a complex referred to a mol-
ecular component involving the same set of strands but irrespective
of strand order, whereas in this work we use complex to refer to a
specific ordered complex with a specific secondary structure at the
domain level or at the sequence level.

7Two domains may only unbind spontaneously if they are short, as
determined by the reaction enumerator. Short domains are also
called toeholds.
8The first-step model is generalized to reactions with any number of
reactants, although KinDA only handles unimolecular and bimolecular
reactions.
9Although this shorthand resembles a condensed reaction, the set of
condensed reactions from the enumeration may not include all unpro-
ductive reactions. In fact, Peppercorn will never include unproductive
reactions when producing the condensed network. Therefore, KinDA
automatically lists and considers the unproductive reactions itself.
10Future advances to the domain-level reaction subnetwork may
obviate the need for the strand-level reaction subnetwork, as would
be necessary to accommodate molecules with multiple distinct
resting macrostates.
11The converse is not necessarily true, as dissociations not in strand-
level reaction subnetwork may not be flagged as spurious. For
instance, for a reactant A:B:C:D (A, B, C, and D are strands) with
two enumerated strand-level reaction pathways A:B:C:D ! A þ
B:C:D ! A þ B þ C:D and A:B:C:D ! B þ A:C:D ! B þ C þ A:D,
the transition B þ A:C:D ! A þ B þ C:D would not render a
trajectory spurious by the definition implemented in KinDA.
12In some cases, the Boltzmann sampled initial states ofA and B will
have no available ways to bind with each other. Such a trajectory will
halt immediately and will not be classified as any of the three reaction
types in the first-step model, but will be tallied as part of the rate
estimate for relevant reactions, as described in [48] and §3.5.
13KinDA uses kscale¼ 1000 by default.
14In this section, we usex for a standard concentration to more easily
discuss scaling concentrations of all species.
15Although the reverse reaction of the first step (I þ SB! C þ S) also
involves dissociation of toehold 5, successful reverse reaction trajec-
tories are exactly those that are fast enough to prevail over the
competing unproductive reaction that involves dissociation by toe-
hold 3. Thus, the kinetics of dissociation by toehold 3 dictate the k2

for this reaction.
16Both of these leak reactions will eventually produce OB þ SB þW,
but KinDA stops Multistrand simulations as soon as an off-pathway
strand-level complex is encountered, thus distinguishing trajectories
for which SB is release first from those for which OB is released
first. The less probable pathway was only encountered for T � 408C.
17It may seem remarkable that k2 for C þ S! I þ SB and for I þ SB
! C þ S are apparently identical, despite their k1 values being differ-
ent by roughly two orders of magnitude. However, it is a necessary
consequence of flux balance between macrostates in an equilibrium
system whose microscopic rates satisfy detailed balance, as is the
case with the Multistrand’s kinetic model and FSM’s Boltzmann
sampling of initial conformations.
18Note that Peppercorn has enumerated an unexpected resting
macrostate not shown in figure 8a, G. This unintended domain-
level feature could be analysed by KinDA as with any other
enumerated feature.

References

1. Seeman NC. 1990 De novo design of sequences for
nucleic acid structural engineering.J. Biomol. Struct.
Dyn.8, 573…581. (doi:10.1080/07391102.1990.
10507829)

2. Yurke B, Turberfield AJ, Mills Jr AP, Simmel FC,
Neumann JL. 2000 A DNA-fuelled molecular
machine made of DNA.Nature406, 605…608.
(doi:10.1038/35020524)

3. Zhang DY, Seelig G. 2011 Dynamic DNA
nanotechnology using strand-displacement
reactions.Nat. Chem.3, 103…113. (doi:10.1038/
nchem.957)

4. Turberfield AJ, Mitchell JC, Yurke B, Mills Jr AP,
Blakey MI, Simmel FC. 2003 DNA fuel for free-

running nanomachines.Phys. Rev. Lett.90, 118102.
(doi:10.1103/PhysRevLett.90.118102)

5. Bois JS, Venkataraman S, Choi HMT, Spakowitz AJ,
Wang Z-G, Pierce NA. 2005 Topological constraints
in nucleic acid hybridization kinetics.Nucleic Acids
Res.33, 4090…4095. (doi:10.1093/nar/gki721)

6. Seelig G, Yurke B, Winfree E. 2006 Catalyzed
relaxation of a metastable DNA fuel.J. Am.
Chem. Soc.128, 12 211…12 220. (doi:10.1021/
ja0635635)

7. Zhang DY, Turberfield AJ, Yurke B, Winfree E. 2007
Engineering entropy-driven reactions and networks
catalyzed by DNA.Science318, 1121…1125.
(doi:10.1126/science.1148532)

8. Yin P, Choi HMT, Calvert CR, Pierce NA. 2008
Programming biomolecular self-assembly pathways.
Nature451, 318…322. (doi:10.1038/nature06451)

9. Chen X. 2011 Expanding the rule set of DNA
circuitry with associative toehold activation.
J. Am. Chem. Soc.134, 263…271. (doi:10.1021/
ja206690a)

10. Chen X, Briggs N, McLain JR, Ellington AD. 2013
Stacking nonenzymatic circuits for high signal gain.
Proc. Natl Acad. Sci. USA110, 5386…5391. (doi:10.
1073/pnas.1222807110)

11. Genot AJ, Bath J, Turberfield AJ. 2013 Combinatorial
displacement of DNA strands: application to matrix
multiplication and weighted sums.Angew. Chem.

rsif.royalsocietypublishing.org
J.

R
.

S
oc.

Interface
15:

20180107

19

http://dx.doi.org/10.1080/07391102.1990.10507829
http://dx.doi.org/10.1080/07391102.1990.10507829
http://dx.doi.org/10.1038/35020524
http://dx.doi.org/10.1038/nchem.957
http://dx.doi.org/10.1038/nchem.957
http://dx.doi.org/10.1103/PhysRevLett.90.118102
http://dx.doi.org/10.1093/nar/gki721
http://dx.doi.org/10.1021/ja0635635
http://dx.doi.org/10.1021/ja0635635
http://dx.doi.org/10.1126/science.1148532
http://dx.doi.org/10.1038/nature06451
http://dx.doi.org/10.1021/ja206690a
http://dx.doi.org/10.1021/ja206690a
http://dx.doi.org/10.1073/pnas.1222807110
http://dx.doi.org/10.1073/pnas.1222807110


ni

m
.

s.
W
.
3

iza

)
11

c.
97
di
em
.1

re
lo

)
J

17
-s

pu
10

u
em
3

ur
ai
ra
re
rl

ol
k

03

ro
ci
.

il
gra
.
n

e
na
6

A
ac
72
Re
is
10

ar
io
0
S
e
9

vis
woyn
bio
20
icstl
7

N
/s1

tra

20
1
A
ra
re
rl

,
is
ar

pp

ne
K
tp
u

m
s..
sif

tt
s

.tic
rm

in
la
n

(h

0
rk
ci
3

17
at
p

8
at
..

g Q, Thachuk C,
RN-to-DSD
ization, and
d
rijder,
cience,

nger.
nucleic acid
ids
/gkg595)
tructure analysis

002/

Wolfe BR, Pierce
2011 NUPACK:
stems.
02/jcc.

chuster P. 2000
ution.
0992161)
ert H. 2005
ing path and
nots and

doi:10.

. 2015 Stochastic
nteracting

illips,
ience,

nger.
infree E, Pierce
f interacting

009 Automatic
kinetic
ular
Suyama).

pp. 88…96.

011 Abstraction
numeration
d
d Applications,
SREA

016 A strand
putation.
016/j.

athway
oi:10.

tion of chemical

2806.104637)
ass action

rsif.royalsocietypublishing.org
J.

R
.

S
oc.

Interface
15:

20180107

20
Int. Ed.52, 1189…1192. (doi:10.1002/a
201206201)

12. Kotani S, Hughes WL. 2017 Multi-ar
for dynamic DNA nanotechnology.J. Am. Chem
Soc.139, 6363…6368. (doi:10.1021/jac

13. Seelig G, Soloveichik D, Zhang DY,
Enzyme-free nucleic acid logic circuitsScience314,
1585…1588. (doi:10.1126/science.11

14. Zhang DY. 2010 Cooperative hybrid
oligonucleotides.J. Am. Chem. Soc.133,
1077…1086. (doi:10.1021/ja109089q

15. Genot AJ, Bath J, Turberfield AJ. 20
logic circuits made of DNA.J. Am. Chem. So133,
20 080…20 083. (doi:10.1021/ja2084

16. Qian L, Winfree E. 2011 Scaling up
computation with DNA strand displac
cascades.Science332, 1196…1201. (doi:10
science.1200520)

17. Li W, Yang Y, Yan H, Liu Y. 2013 Th
majority logic gate and multiple input
based on DNA strand displacement.Nano Lett.13,
2980…2988. (doi:10.1021/nl4016107

18. Thubagere AJ, Thachuk C, Berleant
Ardelean DA, Cherry KM, Qian L. 20
aided systematic construction of large
strand displacement circuits using un
components.Nat. Commun.8, 14373. (doi:10.
ncomms14373)

19. Qian L, Winfree E, Bruck J. 2011 Ne
computation with DNA strand displac
cascades.Nature475, 368…372. (doi:10.10
nature10262)

20. Chen SX, Seelig G. 2017 A DNA ne
constructed from molecular variable g
InDNA computing and molecular prog, vol.
10 467 (eds R Brijder, L Qian). Lectu
Computer Science, pp. 110…121. Be
Springer.

21. Cherry K, Qian L. 2018 Scaling up m
recognition with DNA-based winner-ta
networks.Nature559, 370…376. (doi:10.1
s41586-018-0289-6)

22. Wilhelm D, Bruck J, Qian L. 2018 P
switching circuits in DNA.Proc. Natl Acad. S
USA115, 903…908. (doi:10.1073/pnas
1715926115)

23. Chen Y-J, Dalchau N, Srinivas N, Ph
L, Soloveichik D, Seelig G. 2013 Pro
chemical controllers made from DNANat.
Nanotechnol.8, 755…762. (doi:10.1038/n
2013.189)

24. Srinivas N, Parkin J, Seelig G, Winfre
D. 2017 Enzyme-free nucleic acid dy
systems.Science358, eaal2052. (doi:10.112
science.aal2052)

25. Qian L, Winfree E. 2011 A simple DN
synthesizing large-scale circuits.J. R. Soc. Interf8,
1281…1297. (doi:10.1098/rsif.2010.0

26. Song T, Garg S, Mokhtar R, Bui H,
Analog computation by DNA strand d
circuits.ACS Syn. Biol.5, 898…912. (doi:10.
acssynbio.6b00144)
e.

junctions

7b00530)
infree E. 2006

2493)
tion of

Reversible

p)
gital circuit
ent

126/

e-input
gic circuit

, Johnson RF,
Compiler-
cale DNA
rified
38/

ral network
ent

8/

al network
n amplifiers.
mming
Notes in
in, Germany:

ecular pattern
e-all neural
8/

babilistic
.

lips A, Cardelli
mmable

ano.

E, Soloveichik
mical
/

gate motif for
e
9)
if J. 2016

placement
21/

27. Oishi K, Klavins E. 2011 Biomolecul
implementation of linear I/O systems.IET Syst. B
5, 252…260. (doi:10.1049/iet-syb.201

28. Genot AJ, Fujii T, Rondelez Y. 2013
DNA circuits with competitive neural n
J. R. Soc. Interface10, 20130212. (doi:10.10
2013.0212)

29. Lakin MR, Stefanovic D. 2016 Super
adaptive DNA strand displacement netACS S
Biol.5, 885…897. (doi:10.1021/acssyn

30. Soloveichik D, Seelig G, Winfree E.
universal substrate for chemical kinetProc. Na
Acad. Sci. USA107, 5393…5398. (doi:10.10
0909380107)

31. Cardelli L. 2011 Strand algebras for D
Nat. Comput.10, 407…428. (doi:10.1007
010-9236-7)

32. Cardelli L. 2013 Two-domain DNA s
displacement.Math. Struct. Comput. Sci.23,
247…271. (doi:10.1017/S096012951

33. Qian L, Soloveichik D, Winfree E. 20
Turing-universal computation with DN
InDNA computing and molecular prog, vol.
6518 (eds Y Sakakibara, Y Mi). Lectu
Computer Science, pp. 123…140. Be
Springer.

34. Lakin MR, Phillips A. 2011 Modelling
and verifying Turing-powerful strand d
systems. InDNA computing and molecul
programming, vol. 6937 (eds L Cardelli, W
Lecture Notes in Computer Science,
Berlin, Germany: Springer.

35. Berleant J, Berlind C, Badelt S, Dan
Schaeffer J, Winfree E. 2018 KinDA:
strand displacement analyzer. See ht
com/DNA-and-Natural-Algorithms-Gro

36. Phillips A, Cardelli L. 2009 A progra
language for composable DNA circuitJ. R. Soc
Interface6, S419…S436. (doi:10.1098/r
0072.focus)

37. Lakin MR, Youssef S, Polo F, Emmo
2011 Visual DSD: a design and analy
for DNA strand displacement systemsBioinforma
27, 3211…3213. (doi:10.1093/bioinfo
btr543)

38. Grun C, Sarma K, Wolfe B, Woo Sh
2015 A domain-level DNA strand disp
reaction enumerator allowing arbitrary
pseudoknotted secondary structures.
org/abs/1505.03738).

39. Lakin MR, Stefanovic D, Phillips A. 2
verification of chemical reaction netwo
via serializability analysis.Theoret. Comput. S632,
21…42. (doi:10.1016/j.tcs.2015.06.03

40. Shin SW, Thachuk C, Winfree E. 20
chemical reaction network implement
pathway decomposition approach.Theoret. Com
Sci.(doi:10.1016/j.tcs.2017.10.011)

41. Johnson R, Dong Q, Winfree E. 201
chemical reaction network implement
bisimulation approach.Theoret. Comput. Sci(doi:10
1016/j.tcs.2018.01.002)
l.
.0056)
caling down
tworks.
8/rsif.

ed learning in
rks..
.6b00009)
10 DNA as a
.
3/pnas.

A computing.
1047-

nd

00102)
1 Efficient
polymers.
mming
Notes in

in, Germany:

simulating
placement

Shih).
. 130…144.

nberg F,
inetic DNA
s://github.
p/KinDA.
ming

.2009.

S, Phillips A.
is tool
s
atics/

S, Winfree E.
cement
on-
ttp://arxiv.

16 Modular
encodings

.
)
Verifying

ions: a
ut.

Verifying
ions: a

42. Badelt S, Shin SW, Johnson RF, Don
Winfree E. 2017 A general-purpose C
compiler with formal verification, optim
simulation capabilities. InDNA computing an
molecular programming, vol. 10 467 (eds R B
L Qian). Lecture Notes in Computer S
pp. 232…248. Berlin, Germany: Spri

43. Zuker M. 2003 Mfold web server for
folding and hybridization prediction.Nucleic Ac
Res.31, 3406…3415. (doi:10.1093/nar

44. Hofacker IL. 2009 RNA secondary s
using the Vienna RNA package.Curr. Protoc.
Bioinformatics26, 12.2.1-12.2.16. (doi:10.1
0471250953.bi1202s26)

45. Zadeh JN, Steenberg CD, Bois JS,
MB, Khan AR, Dirks RM, Pierce NA.
analysis and design of nucleic acid sy
J. Comput. Chem.32, 170…173. (doi:10.10
v32:1)

46. Flamm C, Fontana W, Hofacker IL, S
RNA folding at elementary step resolRNA6,
325…338. (doi:10.1017/S135583820

47. Xayaphoummine A, Bucher T, Isamb
Kinefold web server for RNA/DNA fold
structure prediction including pseudok
knots.Nucleic Acids Res.33, W605…W610. (
1093/nar/gki447)

48. Schaeffer JM, Thachuk C, Winfree E
simulation of the kinetics of multiple i
nucleic acid strands. InDNA computing and
molecular programming, vol. 9211 (eds A Ph
P Yin). Lecture Notes in Computer Sc
pp. 194…211. Berlin, Germany: Spri

49. Dirks RM, Bois JS, Schaeffer JM, W
NA. 2007 Thermodynamic analysis o
nucleic acid strands.SIAM Review49, 65…88.
(doi:10.1137/060651100)

50. Kawamata I, Tanaka F, Hagiya M. 2
design of DNA logic gates based on
simulation. InDNA Computing and molec
programming, vol. 5877 (eds R Deaton, A
Lecture Notes in Computer Science,
Berlin, Germany: Springer.

51. Kawamata I, Tanaka F, Hagiya M. 2
of DNA graph structures for efficient e
and simulation. InInt. Conf. on Parallel an
Distributed Processing Techniques an
18…21 July, Las Vegas, NV, pp. 800…806. C
Press.

52. Petersen RL, Lakin MR, Phillips A. 2
graph semantics for DNA-based com
Theoret. Comput. Sci.632, 43…73. (doi:10.1
tcs.2015.07.041)

53. Hoops Set al.2006 COPASI„a complex p
simulator.Bioinformatics22, 3067…3074. (d
1093/bioinformatics/btl485)

54. Gillespie DT. 2007 Stochastic simula
kinetics.Annu. Rev. Phys. Chem.58, 35…55.
(doi:10.1146/annurev.physchem.58.03

55. Horn F, Jackson R. 1972 General m
kinetics.Arch. Ration. Mech. Anal.47, 81…116.
(doi:10.1007/BF00251225)

http://dx.doi.org/10.1002/anie.201206201
http://dx.doi.org/10.1002/anie.201206201
http://dx.doi.org/10.1021/jacs.7b00530
http://dx.doi.org/10.1126/science.1132493
http://dx.doi.org/10.1021/ja109089q
http://dx.doi.org/10.1021/ja208497p
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1021/nl4016107
http://dx.doi.org/10.1038/ncomms14373
http://dx.doi.org/10.1038/ncomms14373
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1073/pnas.1715926115
http://dx.doi.org/10.1073/pnas.1715926115
http://dx.doi.org/10.1038/nnano.2013.189
http://dx.doi.org/10.1038/nnano.2013.189
http://dx.doi.org/10.1126/science.aal2052
http://dx.doi.org/10.1126/science.aal2052
http://dx.doi.org/10.1098/rsif.2010.0729
http://dx.doi.org/10.1021/acssynbio.6b00144
http://dx.doi.org/10.1021/acssynbio.6b00144
http://dx.doi.org/10.1049/iet-syb.2010.0056
http://dx.doi.org/10.1098/rsif.2013.0212
http://dx.doi.org/10.1098/rsif.2013.0212
http://dx.doi.org/10.1021/acssynbio.6b00009
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1007/s11047-010-9236-7
http://dx.doi.org/10.1007/s11047-010-9236-7
http://dx.doi.org/10.1017/S0960129512000102
http://github.com/DNA-and-Natural-Algorithms-Group/KinDA
http://github.com/DNA-and-Natural-Algorithms-Group/KinDA
http://github.com/DNA-and-Natural-Algorithms-Group/KinDA
http://dx.doi.org/10.1098/rsif.2009.0072.focus
http://dx.doi.org/10.1098/rsif.2009.0072.focus
http://dx.doi.org/10.1093/bioinformatics/btr543
http://dx.doi.org/10.1093/bioinformatics/btr543
http://arxiv.org/abs/1505.03738
http://arxiv.org/abs/1505.03738
http://arxiv.org/abs/1505.03738
http://dx.doi.org/10.1016/j.tcs.2015.06.033
http://dx.doi.org/10.1016/j.tcs.2017.10.011
http://dx.doi.org/10.1016/j.tcs.2018.01.002
http://dx.doi.org/10.1016/j.tcs.2018.01.002
http://dx.doi.org/10.1093/nar/gkg595
http://dx.doi.org/10.1002/0471250953.bi1202s26
http://dx.doi.org/10.1002/0471250953.bi1202s26
http://dx.doi.org/10.1002/jcc.v32:1
http://dx.doi.org/10.1002/jcc.v32:1
http://dx.doi.org/10.1017/S1355838200992161
http://dx.doi.org/10.1093/nar/gki447
http://dx.doi.org/10.1093/nar/gki447
http://dx.doi.org/10.1137/060651100
http://dx.doi.org/10.1016/j.tcs.2015.07.041
http://dx.doi.org/10.1016/j.tcs.2015.07.041
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/10.1007/BF00251225


, S
in
ic
o
S
79
,
,
e

lo

g7
es
rl

of
xc
oi:

, Y
01
d

1)
ka
G
uc
4

. 2
id
gk
rk
de
gem

.6
se
ac

g
es in Computer
any: Springer.

ulation-guided
raspecific
0.

. 2009 Forward
ns..:
0953-

r W, Flamm C,
t computation

en.
/37/17/005)
finite state

f the

rsif.royalsocietypublishing.org
J.

R
.

S
oc.

Interface
15:

20

21
56. Mathews DH, Disney MD, Childs JL
Zuker M, Turner DH. 2004 Incorporat
modification constraints into a dynam
programming algorithm for prediction
secondary structure.Proc. Natl Acad. Sci. U101,
7287…7292. (doi:10.1073/pnas.0401

57. Zolaktaf S, Dannenberg F, Rudelis X
Schaeffer JM, Schmidt M, Thachuk C
2017 Inferring parameters for an elem
model of DNA structure kinetics with
context-dependent Arrhenius rates. InDNA
computing and molecular programmin, vol. 1046
(eds R. Brijder, L. Qian). Lecture Not
Computer Science, pp. 172…187. Be
Springer.

58. Zhang DY, Winfree E. 2009 Control
displacement kinetics using toehold e
J. Am. Chem. Soc.131, 17 303…17 314. (d
1021/ja906987s)
chroeder SJ,
g chemical

f RNA
A
9101)

Condon A,
Winfree E.
ntary step
cally

in
in, Germany:

DNA strand
hange.
10.

59. Srinivas N, Ouldridge TE, Sˇulc P, Schaeffer JM
B, Louis AA, Doye JPK, Winfree E. 2
biophysics and kinetics of toehold-me
strand displacement.Nucleic Acids Res.41, 10
641…10 658. (doi:10.1093/nar/gkt80

60. Groves B, Chen Y-J, Zurla C, Poche
Kirschman JL, Santangelo PJ, Seelig
Computing in mammalian cells with n
strand exchange.Nat. Nanotechnol.11, 287…29
(doi:10.1038/nnano.2015.278)

61. Dirks RM, Lin M, Winfree E, Pierce NA
for computational nucleic acid design.Nucleic Ac
Res.32, 1392…1403. (doi:10.1093/nar/

62. Wolfe BR, Porubsky NJ, Zadeh JN, Di
2017 Constrained multistate sequence
nucleicacid reactionpathwayengineerinJ.Am. Ch
Soc.139, 3134…3144. (doi:10.1021/jacs

63. Zhang DY. 2010 Towards domain-ba
design for DNA strand displacement reDNA
urke
3 On the

iated DNA

ilov S,
. 2016
leic acid

.

004 Paradigms
s
h291)
s RM, Pierce NA.
sign for

..
b12693)
d sequence
tions. In

computing and molecular programmin, vol. 6518
(eds Y Sakakibara, Y Mi). Lecture Not
Science, pp. 162…175. Berlin, Germ

64. Sherry Wang J, Zhang DY. 2015 Sim
DNA probe design for consistently ult
hybridization.Nat. Chem.7, 545…553. (doi:1
1038/nchem.2266)

65. Allen RJ, Valeriani C, ten Wolde PR
flux sampling for rare event simulatioJ. Phys
Condens. Matter21, 463102. (doi:10.1088/
8984/21/46/463102)

66. Wolfinger MT, Andreas Svrcek-Seile
Hofacker IL, Stadler PF. 2004 Efficien
of RNA folding dynamics.J. Phys. A: Math. G37,
4731…4741. (doi:10.1088/0305-4470

67. Munsky B, Khammash M. 2006 The
projection algorithm for the solution o
chemical master equation.J. Chem. Phys.124,
044104. (doi:10.1063/1.2145882)
 1
80
107

http://dx.doi.org/10.1073/pnas.0401799101
http://dx.doi.org/10.1021/ja906987s
http://dx.doi.org/10.1021/ja906987s
http://dx.doi.org/10.1093/nar/gkt801
http://dx.doi.org/10.1038/nnano.2015.278
http://dx.doi.org/10.1093/nar/gkh291
http://dx.doi.org/10.1021/jacs.6b12693
http://dx.doi.org/10.1038/nchem.2266
http://dx.doi.org/10.1038/nchem.2266
http://dx.doi.org/10.1088/0953-8984/21/46/463102
http://dx.doi.org/10.1088/0953-8984/21/46/463102
http://dx.doi.org/10.1088/0305-4470/37/17/005
http://dx.doi.org/10.1063/1.2145882

	Automated sequence-level analysis of kinetics and thermodynamics for domain-level DNA strand-displacement systems
	Introduction
	Background
	Basic concepts
	Current methods of domain-level system analysis
	Current methods of sequence-level system verification

	Methods
	Basic definitions
	Software dependencies
	Relating domain-level and sequence-level resting macrostates and secondary structure
	Relating domain-level and sequence-level reaction pathways and reaction rates
	Estimating system parameters
	Estimating conformation probabilities
	Estimation of pi
	Error estimation for pi

	Estimating reaction rates (bimolecular reactions)
	Estimation of k1
	Error estimation for k1
	Estimation of k2
	Error estimation for k2

	Estimating reaction rates (unimolecular reactions)
	Estimation of k1
	Error estimation for k1
	Estimation of k2
	Error estimation for k2


	Usage and interpretation of the analysis framework

	Results
	Case study: entropy-driven catalyst
	Case study: multiple desired pathways
	Case study: mechanisms combining three-way and four-way branch migration
	Case study: binding reactions and macrostates

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


