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ABSTRACT. Approaches to DNA-based computing by self-assembly require the
use of DNA nanostructures, called tiles, that have efficient chemistries, ex-
pressive computational power, and convenient input and output (I/O) mech-
anisms. We have designed two new classes of DNA tiles, TAO and TAE, both
of which contain three double-helices linked by strand exchange. Structural
analysis of a TAO molecule has shown that the molecule assembles efficiently
from its four component strands. Here we demonstrate a novel method for
I/0 whereby multiple tiles assemble around a single-stranded (input) scaffold
strand. Computation by tiling theoretically results in the formation of struc-
tures that contain single-stranded (output) reported strands, which can then
be isolated for subsequent steps of computation if necessary. We illustrate the
advantages of TAO and TAE designs by detailing two examples of massively
parallel arithmetic: construction of complete XOR and addition tables by lin-
ear assemblies of DNA tiles. The three helix structures provide flexibility for
topological routing of strands in the computation, allowing the implementation
of string tile models.

1. Introduction

In his seminal paper on molecular computation [Adl94], Adleman demon-
strated a generate-and-separate algorithm for solving Directed Hamiltonian Path
Problems (DHPP). In the first phase of his algorithm, a combinatorial library of
DNA molecules representing potential solutions to the problem is generated by
random hybridization and ligation of a small number of oligonucleotide species. In
the second phase, a sequence of affinity separation and other laboratory procedures
isolates the DNA molecules representing the actual solution; the sequence of this
molecule, and thus the answer to the mathematical problem, can then be deter-
mined. However, the generate-and-separate strategy has two difficulties. First, for
moderately large problems, a naive generation strategy must generate an astro-
nomical number of DNA strands to represent all potential solutions. Second, the
number of laboratory procedures, each time consuming and error-prone, grows with
the size of the problem.

The first difficulty can be avoided by interspersing the generate procedures
and the separation procedures [FB97, FB99]. Simple examples of this approach
include DNA implementations of dynamic programming [BB98] and breadth-first
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search [MAS99, YS99]. However, this approach usually comes at the cost of
making the second difficulty more severe, by multiplying the number of procedures
required.

Our work has focused on another approach: computation by self-assembly.
Self-assembly is the spontaneous self-ordering of substructures into superstruc-
tures driven by annealing of, in this case, Watson-Crick base-pairing DNA se-
quences. Computation by self-assembly entails the building up of superstructures
from starting units such that the assembly process itself performs the actual com-
putation. Adleman made use of a simple form of computation by self-assembly in
his original experiment [Ad194]: his algorithm does not blindly generate all pos-
sible sequences of vertices; instead, the oligonucleotide sequences and the logic of
Watson-Crick complementarity guide the self-assembly processes so that only valid
paths are generated. We have generalized this approach to two-dimensional (2D)
self-assembly processes, where it can be seen that computation by self-assembly is
Turing-universal [Win96]. The building blocks in these constructions are branched
DNA complexes, which we call DNA tiles, consisting of several individual DNA
oligonucleotides that associate with well-defined secondary structure. DNA tiles
are designed to contain several short sections of unpaired, single-strand DNA (ss-
DNA) extending from the ends of selected helices that function as binding domains,
which we call pads. Individual tiles interact by annealing with other specific tiles
via their ssDNA pads to self-assemble into desired superstructures. The use of pads
with complementary base sequences allows the neighbor relations of tiles in the fi-
nal assembly to be intimately controlled; thus the only large-scale superstructures
formed during assembly are those that encode valid mappings of input to out-
put. Consequently, the second difficulty mentioned previously has been addressed:
rather than implementing a DNA computing algorithm using a sequence of multiple
laboratory procedures, our approach essentially uses only four: mixing the input
oligonucleotides to form the DNA tiles, allowing the tiles to self-assemble into su-
perstructures, ligating strands that have been co-localized, and then performing a
single separation to identify the correct output.

We now give a brief description of the mathematical tiling and DNA construc-
tion techniques underlying our work.

1.0.1. Computation by Tiling. A class of domino tiling problems were defined
by Wang [Wan61]. One is given a finite set of unit size square tiles, each of
whose sides are labeled with symbols over a finite alphabet (the pads). Addi-
tional restrictions may include the initial placement of a subset of these tiles,
and the dimensions of the region where tiles must be placed. The problem is
to place the tiles, chosen with replacement and without rotation, to completely
fill the given region so that each pair of abutting tiles have identical symbols on
their contacting sides. Proofs of the undecidability of the infinite tiling problem
rely on constructions wherein tiling patterns simulate single-tape Turing Machines
[Buc62, Wan63, Ber66, Rob71, Wan75]. Other results include reductions of
NP-complete problems to finite-size tiling problems [LP81]; tilings and patterns in
general are surveyed in [GS87].

1.0.2. DNA as a Construction Material. Nano-fabrication of structures in DNA
was pioneered by Seeman starting in the 1980s (e.g., see [See82]). Seeman and
his students have built a multitude of ingenious constructions including: DNA
branched junctions [SCK89, WMKS91, DZS92], knots [SCD*93], Borromean
rings [MSS97], a cube [CS91], and a truncated octahedron [ZS94] (reviewed in e.g.
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[See98]). Recently, they have reported the construction from DNA of a nanome-
chanical device capable of controlled movement [MSSS99].

The most relevant constructs for our current purposes are the double-crossover
(DX) complexes, which consist of two double-helices interlocked by exchange of
oligonucleotide strands at two separate crossover points [FS93]. In DX complexes,
a particular oligonucleotide strand base-pairs with its complement in one helix then
crosses over to continue base-pairing with its complementary section on a second,
adjacent helix; the multiple crossover points constrain the helix axes to be co-planar.
Because DX complexes can be used as DNA tiles in self-assembly reactions, we will
often refer to them as such.

DX complexes come in five varieties that differ from one another in the geometry
of strand exchange and the topology of the strand paths through the tile. Anti-
parallel crossovers cause a reversal in direction of strand propagation through the
tile following exchange of strand to a new helix. We will primarily concern ourselves
with tiles containing anti-parallel crossovers (DAO and DAE) rather than those
with parallel crossovers (DPE, DPOW, DPON), because laboratory characteriza-
tions of parallel tiles showed them to be less stable structurally than anti-parallel
tiles [FS93]. DX tiles provide up to four ssDNA pads for encoding associations with
neighboring tiles. DX complexes have been shown to be sufficiently rigid to avoid
formation of circular structures as seen with the more flexible dsSDNA [LYQS96].
Recently, 2D lattices consisting of hundreds of thousands of DX units have been
constructed and observed by atomic force microscopy [WLWS98], and DX com-
plexes and lattices have been used successfully as substrate for enzymatic reactions
including cleavage and ligation [LSS99].

1.0.3. Parallelism, Speed and Tiling Depth. The massive parallelism inherent
in DNA-based computers has, since its inception, driven thinking in the field. In
computation by self-assembly, parallelism reveals itself in many ways. Each su-
perstructure may contain information representing a different calculation (global
parallelism). Growth on each individual superstructure may occur at many loca-
tions simultaneously (local parallelism). Self-assembly may be restricted such that
certain assembly reactions can proceed only after others have been completed (se-
rial self-assembly). Alternatively, self-assembly reactions may be limited by no
such restrictions (free self-assembly). As examples, BCA tiles utilize local paral-
lelism and serial self-assembly [Win96]; DHHP tiles utilize both local and global
parallism and serial self-assembly [WYS98]; and self-assembly of linear, hairpin,
and branched DNA molecules to generate regular, bilinear, and context-free lan-
guages makes use of global parallelism and free self-assembly [WYS98, Eng99],
as do the proposals of Jonoska et al [JKS99, JKS98|.

It it expected, but unproven, that free self-assembly might be faster and more
robust than serial self-assembly. Three measures assist discussion: the depth of
a superstructure is the maximum number of self-assembly reactions experienced
by any substructure (the depth of the graph of reaction events), and the size of a
superstructure is simply the number of tiles it contains. A superstructure consisting
of n x m tiles, where n > m, is said to have m layers. The depth (size) of a tiling
system is the maximum depth (size) of any superstructure it generates. Likewise for
the number of layers. For example, in a tiling system where A+ B — AB,C+ D —
CD,AB+CD — ABCD, we know that the depth is > 2 and the size is > 4. Again,
although it needs further study, tiling systems with low depth, small size, and few
layers are considered desirable, motivating the search for efficient computations
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performed by such systems. Tiling systems that produce only superstructures with
k layers, for some constant k, are said to use linear self-assembly. As an example, the
two tiling systems for addition discussed here produce 3xn and 1xn superstructures
for n-bit sums and hence are linear, but known tiling systems for multiplication
produce n x n for n-bit products [WER99], and hence are not linear. The BCA
and DHHP tile systems also are not linear.

Reif [Rei99] proposed DNA self-assembly methods of linear size and small
depth to solve a number of fundamental problems (e.g., prefix computation, per-
mutation, integer addition and subtraction, multiplication by a constant number,
finite state automata simulation, and string fingerprinting) that form the basis for
the design of many parallel algorithms. In particular, he gave linear self-assemblies
for cumulative XOR and integer addition with some similarities to those described
here. Furthermore, Reif showed how these elementary operations can be combined
to perform more complex computations, such as bitonic sorting and general circuit
evaluation in O(logn) experimental steps. To increase the likelihood of successful
assembly, Reif also proposed step-wise assembly, which controls the assembly in
distinct stages.

A second approach for small-depth computations is to compress several tile
layers into single tiles, so that the simplest form of linear self-assembly suffices. This
approach works particularly well when the topology and routing of the strands in
the DNA tiles is carefully considered, leading to the notion of string tiles [WER99].
The TAO and TAE tiles reported here are particularly useful as string tiles, and
this approach will be discussed in Section 3.

1.0.4. Previous Methods and New Improvements in I/0. Input and output are
critical to the practical use of DNA-based computing. Winfree [Win96] used the
first and last layers of the assembly for input and output, respectively. Reif [Rei99)
proposed the use of DNA nano-structures known as frames for input and output;
this allows the input and output to be ssDNA strands rather than assemblies of
tiles. Precedent for Reif’s proposal for output can be found in techniques used
to confirm experimental constructions of exotic 3-dimensional structures, wherein
oligonucleotides were ligated together to form new, longer strands which, if present
at the end of the construction process, reported on the success of formation of
the desired structure (for example see [LYQS96]). We also make use of reporter
strands, both to monitor proper assembly and to output the results of a computa-
tional assembly. Further, we advance a similar concept for input by describing and
testing scaffold strands, which are long DNA strands capable of serving as nucle-
ation points for assembly. Preformed, multimeric scaffold strands are added to the
hybridization/annealing mixture in place of the monomeric oligo corresponding to
the tile’s reporter segment. Tiles assemble around the scaffold strand, automati-
cally forming a chain of connected tiles which can subsequently be used as the input
layer in a computational assembly (see Subsection 2.2 below).

2. TAO Tile and 2D Assemblies

Besides expanding the repertoire of DNA tiles, our specific goals in prototyping
a new tile type were to provide four ssDNA pads per tile and simultaneously to
allow a reporter strand to trace its way diagonally through the tile. This latter
property is essential for several of the computational constructions we will consider
later, wherein the diagonal strand, when ligated to its counterparts in neighboring
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FiGURE 1. Strand and Sequence Trace through TAO Tile.
The four oligonucleotides are numbered and labeled with white
circles on their 5’ ends and dark circles on the 3’ ends. Base-pairing
partners are shown one above the other for each of the three helices.
The two TTTT segments are hairpins on the ends of the middle helix.
Horizontal lines show chain direction along the helices but do not
show the helical twist, therefore, position of the strands around the
circumference of the helices is not accurately represented. Vertical
lines represent the strand crossover points. Oligos 1 and 2 are 52
bases in length; oligos 3 and 4 are 72 bases long. Through most of
our discussion oligo-1 is considered the reporter strand, however,
oligo-2 is symmetrical to oligo-1 and can also be used in a reporter
role. Approximate tile dimensions estimated from modeling are
65 x 140 x 20A.

tiles, produces a reporter strand that traces through a diagonal arrangement of tiles
and records the values of the input and output strings from all the tiles.

Building on previous nomenclature [FS93], we refer to our tile design as TAO:
“Triple” helix, with Anti-parallel crossovers, and an Odd number of helical half
turns between crossovers (see Figure 1). Its three double-helices are designed to be
co-planar. Anti-parallel crossovers indicate a reversal of strand direction following
exchange to a new helix. An odd number of half-turns between crossovers ensures
the desired reporter strand path through the tile (compare, for example, with the
strand trace for TAE tiles in Section 3).

The prototype TAO, at 42 bases in length, goes through 4 full helical turns.
Spacing between crossover points on the top helix (as represented in Figure 1) is
16 bases, for 3 helical half-turns; on the middle helix, 5 bases for 1 half-turn; and
on the bottom helix, 26 bases for 5 half-turns. The shortest dsSDNA arms between
crossover and tile edge are 8 bases on the bottom helix. The prototype TAO was
designed without ssDNA sticky ends for ease of structural analysis. Tiles functional
for superstructure assembly will be equipped with 5’ ssDNA pads of about 5 bases
in length. In the 2D assemblies, described below, only 4 pads will be required,
therefore the TAO as shown contains hairpins on both ends of the middle helix.
These hairpins reduce the number of oligonucleotides needed for construction of the
tile; however, they can be eliminated if more pads are required or if altered strand
traces through the tile are desired.

The specific sequences used for the prototype TAO tile were designed using
stochastic hill-climbing to search for nucleotide sequences that would provide the
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desired base-pairing while avoiding undesired pairings. The particular sequences
chosen are drawn from a huge potential pool of sequences; we can, therefore, main-
tain the desired TAO structure while using different internal sequences to represent
different, digit values for tiles in the computational superstructure. The computa-
tional assemblies described below make use of binary encoding schemes (tiles hold
values 1 or 0); however, for some calculations it may be useful to utilize expanded
encodings (for example base-10). The tile assemblies are completely compatible
with expanded alphabets, and would simply require a larger number of starting tile
types.

2.1. TAO Tile Construction Results. TAO tiles have been successfully
built and analyzed previously [LYK'99]. Summarizing this work, four oligonu-
cleotides (with sequences given in Figure 1) were chemically synthesized and pu-
rified by polyacrylamide gel electrophoresis (PAGE) under denaturing conditions.
DNA concentrations of the pure stocks were measured by UV-absorption at 260
nm. Stoichiometric and non-stoichiometric mixtures of oligos (buffered at pH 7.9
- 8.0 and containing 10 mM MgCl,) were heated to 95°C for 5 minutes, then an-
nealed by cooling slowly to ambient temperature over the course of 1 to 1.5 hours.
Following annealing the tiles were subjected to various tests of structural integrity.

First, formation of individual tiles of designed strand stoichiometry and molec-
ular weight was determined by PAGE under non-denaturing conditions. Further,
complex was subjected to random backbone cleavage analysis (using hydroxyl rad-
ical chemistry), showing cleavage and protection patterns on the nucleotide level as
predicted from the tile design. That is, bases predicted to be buried within the tile,
either in crossover points or helix faces occluded by neighboring helix, showed pro-
tection and decreased sensitivity to backbone scission. As expected, bases predicted
to be exposed to solvent water showed the highest rates of scission.

Finally, Ferguson analysis (measurement of electrophoretic migration rates in
gels of various polyacrylamide concentrations) was used to compare hydrodynamic
properties of TAO complexes with those of two related complexes, a DX tile and
a dsDNA of the same overall length. These results showed a decrease in elec-
trophoretic mobility for the TAO tile compared with other complexes, as would be
expected for a molecule with a more compact shape.

The thermal stability of the tile was measured by monitoring UV absorption
during heat induced melting of tile structure. The particular TAO tile we examined
appears to be stable at temperatures below approximately 50°C.

In summary, the prototype TAO has been shown to form with the proper
oligonucleotide stoichiometry, desired molecular weight, and expected structural
signatures on the whole complex and individual nucleotide levels. The tile also
displays acceptable thermal stability for use as a component in the construction of
computational tilings.

2.2. Results of Lattice Assembly on Preformed Scaffold Strands. In
the 2D assembly experimental designs described below, we will make use of ran-
dom formation of input tile layers. These input layers are capable of providing a
reporter strand to enable read-out of the specific inputs from each computational
complex. For many applications it may prove useful to encode specific inputs rather
than randomly assembling large populations of input layers. Additionally, it may
be necessasry to use the output of one self-assembly step as the input to a sub-
sequent step. If preformed reporter strands of desired structure could be used as
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a scaffold on which to assemble a tile layer, they could be used to input specific
values into computational assemblies. To test tile assembly onto preformed inputs,
we constructed scaffold strands. The scaffold strand is the structural equivalent
of a reporter strand, but in our test experiments it is formed by conventional,
double-strand nucleic acid techniques rather than resulting from a tile assembly.

Scaffold strands from oligos-1 and -2 of the TAO tile (as shown in Figure 1,
above) were prepared by the following procedure: anneal tile strand with a 24-
base bridge oligo, ligate to form concatamers, and gel purify ssDNA concatamers
of desired length. The tile oligo sequences and bridge annealing positions are as
follows:

5’ 3’

01igo-1:TTGGCTATCGAGTGGACACCGAAGACCTAACCGCTTTGCGTTCCTGCTCTACTTGGCTATCGAGTGGACACCGAAGACCTAACCGCTTTGCGTTCCTGCTCTAC
Bridge 1: AAGGACGAGATGAACCGATAGCTC
3? 5’

5’ 3’

01igo-2:GTTCAGCCTTAGTGGAGTGGAACGCAAAGCGGTTAGGTCTTCGGACGCTCGTGTTCAGCCTTAGTGGAGTGGAACGCAAAGCGGTTAGGTCTTCGGACGCTCGT
Bridge 2: AGCCTGCGAGCACAAGTCGGAATC
3? 5?

The overlined sequence represents a single copy of tile oligo which is then re-
peated (without overlining) to show how two copies of a tile oligo are held together
by a bridge oligo functioning as a splint. The bridge oligo (24 bases in length)
anneals to the 5’ end of one copy of tile oligo and to the 3’ end of another copy, to
make long multimers of the following form:

In the annealing/ligation reaction for scaffold strand formation, we used ap-
proximately 400 pmoles of phosporylated strand-1 (or strand-2), 100 pmoles un-
phosphorylated strand, and 400 pmoles bridge strand. These ratios gave acceptable
concentrations of concatamers of desired sizes for purification by denaturing PAGE.
We constructed and purified scaffold strands from oligo-1 and oligo-2 in lengths
ranging from 2z to 10z (i.e. 10z strands have 10 tandem copies of the sequence
required for a TAO tile). Following preparation and purification of desired scaf-
fold strands, simple tile assemblies were formed by replacing monomeric tile oligos
with multimeric scaffolds in the tile formation annealing step. Tile assemblies form
around these scaffold strands, which act as tethers connecting adjacent tiles. These
assemblies were analyzed by PAGE and atomic force microscopy (AFM); results
are shown in Figure 2. The gel results (panel A) are exactly as expected. Scaffold
strands 2z-oligo-1 and 3z-oligo-1 are 104 and 156 bases, respectively. They are
ssDNA and run faster than dsDNA markers of the same length. The 22-TAO and
3z-TAO assemblies should contain 252 and 378 base-pairs, respectively. The bands
run slightly faster than dsDNA of the same molecular weight due to their more
compact shape.

The AFM study (panel B) suggests that the assemblies are linear chains in pref-
erence over branched or linked structures. In separate experiments, we examined
assemblies formed around scaffolds of four different sizes. Monomer concentration
was 1.2 to 3.8 uM. Because we used a 2-fold excess of tile strands, relative to the
number of tile positions supported by the scaffold strands, many three-strand par-
tial tile complexes were also present in the solution, appearing as dots in the images.
Average lengths of linear chain assemblies, measured by hand from several images,
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FiIGURE 2. Use of scaffold strands in small non-
computational assemblies. Panel A shows a polyacrylamide
gel (run under non-denaturing conditions) which demonstrates as-
sembly of TAO tile layers around 2z and 3z scaffold strands; below
are diagrams of three-tile (3z TAO) and two-tile (22 TAQ) assem-
blies constructed around 3z-oligo-1 and 2z-oligo-1 scaffold strands.
Lanes 1 and 3 of the gel are scaffold strand alone; lanes 2 and 4
are scaffold strands annealed with oligos 2, 3, and 4 to form tile as-
semblies. Molecular weight markers (MW Stds.) are dsDNA with
sizes indicated in basepairs. Panel B shows AFM images (clockwise
from upper left) of three-, four-, six- and ten-tile assemblies con-
structed around scaffold strands 3z-oligo-2, 4z-oligo-2, 6z-oligo-1
and 10z-oligo-1. Each image is 500 x 500 nm. Height above the
mica surface is indicated by increasing darkness.

were 3z TAO: 54 nm (N =19, 0 = 6.3); 4¢ TAO: 66 nm (N =9, o = 1.3); 6z
TAO: 95 nm (N = 15, 0 = 3.5); and 10z TAO: 175 nm (N = 1). This compares
favorably to the expected lengths of 45, 60, 90, and 150 nm respectively, based
on a diagonal length of 15 nm per tile. However, the AFM study by itself is not
conclusive evidence that all tile positions on a scaffold strand are fully formed.
We have demonstrated the use of scaffold strands as a means of assembling a
DNA lattice. We might wish to answer another question regarding tile assembly
around scaffold strands: is there a maximum length beyond which scaffold strands
would function poorly due to, for example, tangling of partially formed lattices?
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FiGURE 3. 2D Assembly for Cumulative XOR. The tiles
schematics represent TAO tiles. ssDNA pads are shown sticking
off the body of the tiles. The small central box on the input and
output tiles represents a nucleotide sequence encoding the value (0
or 1) of the tile. The reporter strand is shown as a diagonal line
passing through each tile. The figure shows a partially assembled
superstructure in which the next step is the binding of an output
tile into the slot labeled b;, followed by continued assembly of the
output layer up and to the right.

As of yet, we have not tested the upper length limit; it would be useful to test tile
formation on scaffolds of hundreds or thousands of tandem repeats.

2.3. 2D Assemblies for XOR and addition. We will now outline our pro-
cedures for using the TAO tile described above to perform massively parallel arith-
metic. The simplest 2D assembly computer will perform cumulative XOR compu-
tation using a 2-layer architecture: one input tile layer and one output layer. We
will also describe the slightly more complicated 2D assemblies required to execute
bit-wise XOR and addition of two binary inputs, using 3-layer superstructures.
For computations on specific inputs, these procedures will make use of the scaffold
strands mentioned in the previous section. Otherwise, the input tiles will randomly
assemble and thereby generate a molecular look-up table in which each reporter
strand encodes the inputs and outputs of a random calculation. A sufficient num-
ber of DNA tile molecules will provide full coverage of all possible n-bit input
strings. Such look-up tables may be useful as input for further computations as
they represent a unique library of sequences with a complex structural theme.

Recall that the exclusive-or (XOR) operation is a Boolean function that, given
two inputs, yields 0 if the inputs hold the same value, and returns 1 if the inputs
disagree in value. The input to a cumulative XOR computation is a sequence of
Booleans ay,as,as..., and the output is a sequence of Booleans by, bs, b3... where
by = a; and for i > 1, b; = bj_; XOR a;. Thus the i*" output is the cumulative
XOR of the 1%t through the t" inputs.

A 2-layer tile system for computing cumulative XOR is shown in Figure 3 and
Figure 4. As shown, it consists of 8 tile types: 2 input tiles (with value x and pads
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clockwise from lower left: C, A,, and C, where z € {0,1}), 4 output tiles (with
value (z XOR y) and pads By, B, XOR ) and Ay, where z,y € {0,1}), and 2
corner tiles (with pads C' and C, and By and C’). The two types of input tile differ
only in the sequences for the upper-left pad and the internal sequence encoding the
tile’s value. The other two pads (upper-right and lower-left) are complementary
on all input tiles, so that assembly of the input layer can randomly generate all
possible n-bit inputs. Output tiles use the bottom two pads to read inputs (one
from the next input tile and one from the previous output tile), while the upper-
right pad encode outputs. Four output tile types are required, one for each possible
pair of input values in the XOR truth table. The reporter strand is shown as a
diagonal line passing through each tile by the following path: in one pad, through
the sequence encoding the tile’s value, and out through a pad on the opposite side
of the tile. The corner tiles function primarily to route the reporter strand and
thus connect its input and output halves.

In addition to connecting the input and output halves of the reporter strand,
the corner tiles set the boundary conditions for the computation. The two corner
tiles put the first input bit (a;) into position for formation of the binding slot for the
first output bit (b1). Of the two corner tiles depicted in Figure 3 and Figure 4, the
one farthest left (two pads in one side and reporter strand looped between them)
can be a TAO. For the other corner tile (two pads on the top helix connected by
reporter strand) we require a different strand topology which can be provided by a
TAE tile as described below in Section 3 or by a DAE tile [FS93].

Figure 3 shows a partially assembled superstructure in which the next step is
the binding of an output tile into the slot labeled b;, followed by continued assembly
of the output layer up and to the right. To properly bind, the output tile must
match its lower-right pad with the upper-left pad of tile a; and its lower-left pad
with the upper-right pad of the previous output tile (b;—1). Following the annealing
of tile b;, a new slot b;11 will be formed with one pad from b; and one pad from
Aj41-

The 2-layer 2D assemblies for cumulative XOR calculation, as proposed, will
function with TAO tile structures, but could alternatively use simpler double-
crossover tiles containing a hairpin on one helix [WER99]. We chose to use TAOs
in our design in order to test the tiles and assembly techniques that will be required
for 3-layer superstructures for bit-wise XOR and addition.

We now move to discussion of the 3-layer assemblies as shown in Figure 5.
The components and methodology for 3-layer superstructures closely follows that
for the 2-layer cumulative XOR assembly. Again, we rely on random assembly of
input layers, but this time we need two input layers per superstructure, and we
need corner tiles on both ends of the superstructure in order to properly join both
the input and the output portions of the reporter strand into a continuous piece of
DNA.

The pads on input and corner strands are essentially as before, except that the
second set of input tiles uses its own labels. For addition, the eight output tiles
make use of all four pads as well as the (internal) value encoded on the reporter
strand: the value is (z XOR y XOR ¢) and, clockwise from lower left, the pads are
C., A'y, Cor, and A,, where z,y,¢,¢’ € {0,1} and ¢ = 1iff z+y+c¢ > 2. Thus, the
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FIGURE 4. Example I/O for cumulative XOR. This pictured
assembly has input 01011 and output 01101. In examining this
cartoon of the assembly, we read both input and output strings
from left to right. However, the reporter strand starts (5’ end) in
the input tile most distant from the corner tiles and proceeds (5’
to 3') through the input tiles in reverse order, then loops through
the corner tiles and continues through the output tiles in forward
order. Therefore, the ordering of information on the reporter is:
QAp,An—1,0n—2,...,041, bl, b2, b3, veey bn
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FiGUurE 5. Bit-wise XOR and Addition. This schematic rep-
resentation of a 3-layer assembly maintains the conventions used
in the previous figures. The superstructure will assemble such that
b=a+a or b; = a; XOR d'; depending on which set of output
tiles is used. The reporter strand traces through the entire assem-
bly in a spiral, starting in the n*” tile of the lower input layer and
down through the 1%¢, through the corner tiles, through the up-
per input layer (1%¢ to n*?), through distal corner tiles and down
through the output layer (nt* to 1%%).
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pads along the middle diagonal represent the carry bit during the addition. For bit-
wise XOR, there is no need to pass a carry bit, so lower-left pads are complementary
to upper-right pads on all output tiles, therefore only four tile types are required.

The total number of tile types required for the cumulative XOR assembly is
at least eight: 2 inputs, 4 outputs, and 2 corner tiles for the lower-left end of the
superstructure. It may also prove useful to include corner tiles which terminate the
upper-right end of the assembly, thus “bookending” the computation and perhaps
increasing accuracy by ensuring that input and output strings correspond in length.
The bit-wise XOR and addition assemblies require at least 13 and 17 distinct tile
types, respectively. Again expansion of these repertoires by an increase in the
number of corner tiles may be desirable to ensure proper nucleation and termination
of the superstructures. The 1-layer assembly for addition described below in Section
3 requires exactly 10 tile types.

The 2D assemblies described here allow read-in of specific inputs by scaffold
strands (Section 2.2, above) and read-out of input and output strings on reporter
strands. The reporters can be purified following assembly and ligation, since they
have a large, characteristic size and can be separated from other DNA in the test
tube by denaturing PAGE. To determine a particular output string, a reporter
strand can be used as template for PCR (polymerase chain reaction). Adleman
[Ad194] made use of graduated PCR using six different pairs of primers to gauge
the distance between nodes on the Hamiltonian path encoded on his DNA. For the
binary representation we use, we need only two primer pairs (2 PCR reactions) for
our read-out, both containing a constant primers whose binding site is located in
a corner tile, and each containing one of two primers corresponding to the value
encoding sequence words (0 or 1) located in each tile. The reaction containing
corner-tile primer plus value=1 primer, will provide distances from the corner tile
to each tile whose value is set to 1. Since these distance increments are uniform,
values for each digit in the I/O strings can be read directly. Likewise, using primer
corresponding to the sequence word for bit value=0, we will obtain the digit loca-
tions in the input and output for bits whose value is 0.

Two potential problems may prevent the 2D assembly computations from pro-
ceeding as described. First, the scheme requires that assembly progress in two
distinct stages: random input assembly, followed by specific output assembly. If
output tiles begin to anneal with each other or with partially formed input chains,
there exists the potential for improper assembly. The ssDNA pad sequences must
be designed such that input tiles associate with each other at a slightly lower tem-
perature than that which allows output tile annealing. While this temperature
separation is possible in theory it may be difficult to achieve in practice. The
second potential problem involves the “slot filling” association of output tiles into
the forming computational assembly. The proper annealing of output tile requires
matching with two (or 3 for addition) ssDNA pads, however, with some probability
an improper output tile may fill a slot based on matching with a single pad (or
2 pads for addition). If the incorrect output tile fails to dissociate it will block
the processor, returning either a truncated answer or an answer which no longer
corresponds to the input. Results of an initial experiment have shown that dsDNA
with two matching sticky-end achieves preferential binding over single match DNA
[WYS98], however this critical result has yet to be demonstrated in more complex
assemblies involve larger tile structures. Although linear assemblies with few lay-
ers are likely to be less affected by these problems than fully 2D assemblies, these
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potential problems have induced interest in alternative strategies for computation
by self-assembly, such as the one given in the next section.

3. String Tile Assemblies

The concept of string tile assemblies derives from Eng’s observation that allow-
ing neighboring tiles in an assembly to associate by two sticky ends on each side,
he could increase the computational complexity of languages generated by linear
self-assembly [WER99]. By allowing contiguous strings of DNA to trace through
individual tiles and the entire assembly multiple times, surprisingly sophisticated
calculations can be performed with 1-layer linear assemblies [WER99]. For ex-
ample, we describe below a string tile system that computes addition or bit-wise
XOR.

String tiling, in essence, is the collapse of multi-layer assemblies into simpler su-
perstructures by allowing individual tiles to carry multiple segments of the reporter
strand. The 2-layer lattice for cumulative XOR can be reduced to unbranched
dsDNA. The 3-layer addition assembly collapses to a linear row of three-helix (or
perhaps even two-helix) tiles. By allowing a reporter strand to wind through the
assembly, passing through each tile multiple times, we can encode in each tile an
entire row of the truth table. Input and output values are recorded on words inter-
nal to the tile, while information passed to neighboring tiles (e.g. carry bits) are
encoded on the ssDNA pads.

String tile arithmetic implementations have a number of advantageous proper-
ties.

1. Input and output strings assemble simultaneously.

2. Each row in the truth table for the function being calculated is represented
as a single tile type, where all inputs and outputs are encoded on that
tile. Each bit-wise operation is directly encoded in the structure of a tile.
Contrast this with the 2D systems described above, in which input bits and
output bits each had their own tile types.

3. Adjacent tiles only have to agree on the value of the carry bit between them;
one tile passes and one tile receives the bit. The set of pads for carry=0 is
distinct from the carry=1 pads.

4. Adjacent tiles associate via multiple sticky ends, all of which either agree or
disagree, and therefore there is no need to differentiate between single and
double pad matches (as required in the 2D assemblies).

The TAE tile shown in Figure 6 has four half-turns of DNA helix between the
crossover points connecting the top helix with the middle helix and between the
crossover points connecting the middle helix with the bottom helix. This could
be trimmed to two half-turns without loss of the desired strand routing; however,
the longer spacing provides an increased number of base positions for the internal
sequences that encode the (input and output) values of the tile. Longer sequences
also may be useful for improving primer binding for graduated PCR read-out of
the reporter strand. The longest oligonucleotide in the tile (shown in light gray
in Figure 6) may be useful as a diagonal reporter strand in certain constructions.
It is not required for the assembly described below and may make purification of
the desired reporter (black) more difficult, since it winds around reporter segments
repeatedly. It should be possible to introduce a strand break in the long oligo,
perhaps on the middle helix, thus increasing the number of oligos in the tile but
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FIGURE 6. TAE Tile. The structure of the TAE resembles the
TAO in that it is constructed of three double-helices linked by
strand exchange, however, it contains an Even (rather than Odd)
number of helical half-turns between crossover points linking each
pair of helices. Even spacing of crossovers allows reporter strands
(shown in black) to stretch straight through each helix from one
side of the tile to the other. These 3 reporter segments will be used
for building up a long strand which records inputs and outputs for
the entire assembly.

decreasing the strand tangling. At the nick, the strands should be lacking a 5’
phosphate, so that the nick does not get sealed by ligase.

Figure 7 presents details for a linear assembly capable of calculating addition or
bit-wise XOR. The scheme is illustrated using TAE tiles, however it is not partic-
ular to TAEs. The system is a variation of one outlined previously which utilized
DPE tiles (Double-crossover (2 helices), Parallel crossovers, with an Even num-
ber of half-turns between) to execute a similar strand trace through the assembly
[WER99]. TAE tiles may be preferable to DPE because early studies on DX
complexes containing parallel crossovers showed them to be less structurally stable
than their anti-parallel counterparts [FS93]. It is possible that DPE tiles could be
stabilized by increasing the lengths of dsDNA arms flanking the strand exchange
points; however, this has not yet been demonstrated experimentally.

14, and Ip, indicate sequences encoding binary values for the two input bits for
the current operation. O; encodes the value of the output bit. The sticky end pads
on the right encode the value for the carry bit coming into this operation, while
the left-hand pads pass the new carry value on to the next bit operation. Each of
the nine tile locations has two possible sequence words; one each for values 1 and 0.
One tile type is required for each of the eight rows in the truth table, plus one tile
type for each of the two ends of the assembly. The truth table provides the allowed
pairings of values for each of the nine tile locations. The ¢; column provides the
value for all three right-hand pads (c1;,™ ¢2;, ¢3%) while column ¢;; gives the value
for the three left-hand pads (~cl;,¢2;,~ ¢3;). Sequence words for cl, ¢2, and ¢3
are distinct from one another so that each tile binding reaction involves annealing
of three separate pairs of pads. Note that ~cl represents the complement of cl.
When two tiles bump into each other, they either agree at all 3 pads and bind or
they disagree at all three pads and fail to bind. Binding that is not in register
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FIGURE 7. String Tile Addition with TAE Building Blocks.
An example tile is shown schematically in the upper right corner;
it is of the TAE form with the trace of the three reporter segments
indicated by arrows. The truth table of values for ¢;, 14, Ip,;, and
O; is shown in the upper left; each row corresponds to a type of
tile. An example of an assembled structure is given at the bottom,
along with its interpretation. The reporter strand follows a Z-
shaped path from the upper left to the lower right.

(e.g. ¢l bound to ~¢3) is thereby disallowed. An example computational assembly
showing addition of two 3-bit numbers is shown at the bottom. The linear assembly
is composed of five tiles, starting on the right: an end or terminal tile, then a type
4 tile, then a type 5, then a type 3, then a left-end tile. Shown below the assembly
is a summary of the bit values in the order they are recorded on the reporter strand
(carry values, although also written on the reporter strand, are not shown in this
simplified drawing). The ’$’ symbols indicate marker sequences from the end tiles
which mark the boundaries between input and output strings and will be useful as
primer binding sites during read-out by graduated PCR.

The ordering of I/O digit values on the reporter strand is depicted in Figure 7.
Following the strand from 5’ to 3’ we encounter: T4 (nt* bit through 1%¢ bit), O
(1%t through n**), Iy (n** through 1%). This orientation allows the inputs to be
read with the highest digit first (on the left) but may be undesirable since the
output digits are listed on the reporter strand in the opposite direction from the
inputs. Other digit value orderings are possible, and with the use of slightly more
complex tiles (4 or 5 helices) we can encode outputs in the same orientation as
inputs [WER99].
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The linear assembly for addition and bit-wise XOR presented in Figure 7 dis-
plays many benefits over 2D assembly methods: simpler superstructure (1 layer),
fewer tile types (exactly ten types are sufficient), shorter reporter strands, neighbor
tile matching by 3 pads instead of one, etc. The string tile addition scheme outlined
in Figure 7 may have the greatest chance of success of all the DNA computational
assembly procedures discussed. We are currently working to experimentally test
this system.

4. Discussion and Conclusions

We have described the design of two novel DNA tile types, TAO and TAE, as
well as summarizing the experimental analysis of a TAO. We have outlined the use
of reporter strands and scaffold strands for I/O in computational assemblies, and
presented experimental data demonstrating formation of lattice structures around
scaffold strands. We have also detailed three computational assemblies, including
a new string tile system which simplifies many aspects of DNA tilings and shows
promise for experimental construction. We have been working primarily on the
implementation of arithmetic for prototyping functional DN A-based computers. It
is our intention that these experiments and prototypes will enable development
of materials and techniques that may advance DNA-based computing beyond the
realm of demonstration and into useful applications.
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