
Verifying Chemical Reaction Network Implementations:
A Pathway Decomposition Approach

Seung Woo Shin*, Chris Thachuk†, and Erik Winfree†

*University of California, Berkeley
†California Institute of Technology

Abstract

The emerging fields of genetic engineering, synthetic biology, DNA computing, DNA nanotechnology, and molec-
ular programming herald the birth of a new information technology that acquires information by directly sensing
molecules within a chemical environment, stores information in molecules such as DNA, RNA, and proteins, pro-
cesses that information by means of chemical and biochemical transformations, and uses that information to direct
the manipulation of matter at the nanometer scale. To scale up beyond current proof-of-principle demonstrations, new
methods for managing the complexity of designed molecular systems will need to be developed. Here we focus on
the challenge of verifying the correctness of molecular implementations of abstract chemical reaction networks, where
operation in a well-mixed “soup” of molecules is stochastic, asynchronous, concurrent, and often involves multiple
intermediate steps in the implementation, parallel pathways, and side reactions. This problem relates to the verifica-
tion of Petri Nets, but existing approaches are not sufficient for certain situations that commonly arise in molecular
implementations, such as what we call “delayed choice.” We formulate a new theory of pathway decomposition that
provides an elegant formal basis for comparing chemical reaction network implementations, and we present an algo-
rithm that computes this basis. We further show how pathway decomposition can be combined with weak bisimulation
to handle a wider class that includes all currently known enzyme-free DNA implementation techniques. We antici-
pate that our notion of logical equivalence between chemical reaction network implementations will be valuable for
other molecular implementations such as biochemical enzyme systems, and perhaps even more broadly in concurrency
theory.

Keywords: chemical reaction networks; molecular computing; DNA computing; formal verification; molec-
ular programming; automated design

1 Introduction

A central problem in molecular computing and bioengineering is that of implementing algorithmic behavior
using chemical molecules. The ability to design chemical systems that can sense and react to the environ-
ment finds applications in many different fields, such as nanotechnology [4], medicine [6], and robotics [9].
Unfortunately, the complexity of such engineered chemical systems often makes it challenging to ensure
that a designed system really behaves according to specification. Since an experiment is generally an expen-
sive process that requires a large amount of resources, it would be useful to have a procedure by which one
can theoretically verify the correctness of a design using computer algorithms. In this paper we propose a
theory that can serve as a foundation for such automated verification procedures.

Specifically, we focus our attention on the problem of verifying chemical reaction network (CRN) imple-
mentations. Informally, a CRN is a set of chemical reactions that specify the behavior of a given chemical

1

ar
X

iv
:1

41
1.

07
82

v1
 [

cs
.C

E
]

 4
 N

ov
 2

01
4

system in a well mixed solution. For example, the reaction equation A + B → C means that a reactant
molecule of type A and another of type B can be consumed in order to produce a product molecule of type
C. A reaction is applicable if all of its reactants are present in the solution in sufficient quantities. In general,
the evolution of the system from some initial set of molecules is a stochastic, asynchronous, and concurrent
process. While it is clear that abstract CRNs provide the most widely used formal language for describing
chemical systems, it is interesting to note that it can also serve as a programming language in molecular
computing or bioengineering. This is because CRNs are often used to specify the target behavior for an
engineered chemical system (see Figure 1). How can one realize these “target” CRNs experimentally? Un-
fortunately, synthesizing chemicals to efficiently interact — and only as prescribed — presents a significant,
if not infeasible, engineering challenge. Fortunately, any target CRN can be emulated by a (generally more
complex) “implementation” CRN. For example, in the field of DNA computing, implementing a given CRN
using synthesized DNA strands is a well studied topic that has resulted in a number of translation schemes
[18, 2, 16].

In order to evaluate CRN implementations prior to their experimental demonstration, a mathematical
model describing the expected molecular interactions is necessary. For this purpose, software simulators
that embody the relevant physics and chemistry can be used. Beyond performing simulations – which by
themselves can’t provide absolute statements about the correctness of an implementation – it is often pos-
sible to describe the model of the molecular implementation as a CRN. That is, software called “reaction
enumerators” can, given a set of initial molecules, evaluate all possible configuration changes and interac-
tions, possibly generating new molecular species, and repeating until the full set of species and reactions
have been enumerated. In the case of DNA systems, there are multiple software packages available for this
task [12, 8].

Given a “target” CRN which specifies a desired algorithmic behavior and an “implementation” CRN
which purports to implement the target CRN, how can one check that the implementation CRN is indeed
correct? As we shall see, this question involves subtle issues that make it difficult to even define a notion
of correctness that can be universally agreed upon, despite the fact that in this paper we study a somewhat
simpler version of the problem in which chemical kinetics, i.e. rates of chemical reactions, is dropped
from consideration. However, we note that this restriction is not without its own advantages. For instance,
a theory based on chemical kinetics will necessarily involve approximation and therefore may overlook
certain logical flaws in the implementation. In contrast, a theory that ignores chemical kinetics will be exact
and therefore emphasize the logical aspect of the correctness question.

The main challenge in this verification problem lies in the fact that the implementation CRN is usually
much more complex than the target CRN. This is because each reaction in the target CRN, which is of course
a single step in principle, gets implemented as a sequence of steps which may involve “intermediate” species
that were not part of the original target CRN. For example, in DNA-based implementations, the implemen-
tation CRN can easily involve an order of magnitude more reactions and species than the target CRN. Given
that the intermediate species participating in implementations of different target reactions can potentially
interact with each other in spurious ways, it becomes very difficult to verify that such an implementation
CRN is indeed “correct.”

Figure 1 illustrates various different ways that a proposed implementation can be “incorrect.” For in-
stance, one can easily see that CRN2 is clearly not a good implementation of CRN1, because it implements
the reaction A + A + B → C + D in place of A + B → C + D. CRN3 is incorrect in a more subtle
way. While a cursory look may not reveal any immediate problem with this implementation, one can check
that CRN3 can get from the initial state {A,A,B} to a final state {A,B,C}, whereas there is no way to
achieve this using reactions from CRN1. CRN4 is incorrect in yet another way. Starting from the initial
state {A,C}, one can see that the system will sometimes get “stuck” in the state {i, C}, unable to produce
{C,C}, with i becoming an intermediate species that is not really “intermediate.” Now, CRN5 seems to
be free of any such issue, but with what confidence can we declare that it is a correct implementation of

2

A + B → C + D
C + A→ C + C

CRN1

A
 i
i + B
 j

i + j → C + k
k
 D

C + A
 m + n
m + n→ C + C

CRN2

A
 i
i + B
 j
j
 C + k
k → D

C + A
 m + n
m + n→ C + C

CRN3
A→ i

i + B
 j
j → C + k
k
 D

C + A
 m + n
m + n→ C + C

CRN4

A
 i
i + B
 j
j → C + k
k
 D

C + A
 m + n
m + n→ C + C

CRN5

Figure 1: An example of CRN implementation. CRN1 represents the “target” CRN, i.e., the behavior we
desire to implement, whereas CRN2-5 are potential “implementations” of this target CRN. The lowercase
species are “intermediate” species of the implementations, while the uppercase species are “formal” species.

CRN1, having seen the subtle ways that an implementation can go wrong? A goal of this paper is to pro-
vide a mathematical definition of “correctness” of CRN implementations which can be used to test them in
practice.

In our further discussions, we will restrict our attention to implementation CRNs that satisfy the con-
dition that we call “tidiness.” Informally stated, tidy CRNs are implementation CRNs which do not get
“stuck” in the way that CRN4 got stuck above, i.e., they always can “clean up” intermediate species. This
means that any intermediate species that are produced during the evolution of the system can eventually
turn back into species of the target CRN. Of course, the algorithm we present in this paper for testing our
definition of correctness will also be able to test whether the given implementation is tidy.

Finally, we briefly mention that many CRN implementations also involve what are called “fuel” and
“waste” species, in addition to the already mentioned intermediate species. Fuel species are helper species
that are assumed to be always present in the system at fixed concentration, whereas waste species are chem-
ically inert species that sometimes get produced as a byproduct of implemented pathways. While our core
theory addresses the version of the problem in which there is no fuel or waste species, as we demonstrate
in Section 5, it can easily be extended to handle the general case with fuel and waste species, using existing
tools.

2 Motivations for a new theory

To one who is experienced in formal verification, the problem seems to be closely related to various well-
studied notions such as reachability, (weak) trace equivalence, (weak) bisimulation, serializability, etc. In
this section, we briefly demonstrate why none of these traditional notions seems to give rise to a definition
which is entirely satisfactory for the problem at hand.

The first notion we consider is reachability between formal states [15, 14, 7]. We call the species
that appear in both the target and the implementation CRNs “formal,” to distinguish them from species that
appear only in the implementation CRN, which we call “intermediate.” Formal states are defined to be states

3

which do not contain any intermediate species. Since we are assuming that our implementation CRN is tidy,
it then makes sense to ask whether the target CRN and the implementation CRN have the same reachability
when we restrict our attention to formal states only — this is an important distinction from the traditional
Petri net reachability-equivalence problem. That is, given some formal state, what is the set of formal states
that can be reached from that state using reactions from one CRN, as opposed to the other CRN? Do the
target CRN and the implementation CRN give rise to exactly the same reachability for every formal initial
state? While it is obvious that any “correct” implementation must satisfy this condition, it is also easy to see
that this notion is not very strong. For example, consider the target CRN {A→ B, B → C, C → A} and
the implementation CRN {A→ i, i→ C, C → j, j → B, B → k, k → A}. Although the two CRNs are
implementing opposite behaviors in some sense, they still give rise to the same reachability between purely
formal states.

Trace equivalence [7, 11] is another notion of equivalence that is often found in formal verification
literature. Weak trace equivalence requires that it should be possible to “label” the reactions of the imple-
mentation CRN to be either a reaction of the target CRN or a “null” reaction. This labeling must be such
that for any formal initial state, any sequence of reactions that can take place in the target CRN should also
be able to take place in the implementation CRN and vice versa, up to the interpretation specified by the
given labeling. However, since trace equivalence only concerns reactions and not species, it turns out, in
our setting, to be a very weak notion which does not even imply reachability. For example, consider the
target CRN {A
 B, A → ∅} and the implementation CRN {A → i, B → j, i
 j, i → ∅}.1 Then we
can label i → j to be A → B, j → i to be B → A, i → ∅ to be A → ∅, and everything else to be null.
This shows that this implementation CRN is trace equivalent to the target CRN in the above sense, but it is
clear that these two CRNs do not have the same reachability. Whether one can modify the notion of trace
equivalence to make it more useful in our setting is an open question.

Bisimulation is perhaps the most influential notion of equivalence in state transition systems such as
CRNs or Petri nets. A notion of CRN equivalence based on the idea of weak bisimulation is explored in
detail in [5], and indeed it proves to be much more useful than the above two notions. For bisimulation
equivalence of CRNs, each intermediate species is “interpreted” as some combination of formal species,
such that in any state of the implementation CRN, the set of possible next non-trivial reactions is exactly the
same as it would be in the formal CRN. However, one potential problem of this approach is that it demands
a way of interpreting every intermediate species in terms of formal species. Therefore, if we implement the
target CRN {A → B, A → C, A → D} as {A → i, i → B, i → C, A → j, j → D}, we cannot
apply this bisimulation approach because the intermediate i cannot be interpreted to be any of A, B, or C.
Namely, calling it A would be a bad interpretation because i can never turn into D. Calling it B would be
bad because i can turn into C whereas B should not be able to turn into C. For the same reason calling it C
is not valid either.

Perhaps this example deserves closer attention. We name this type of phenomenon the “delayed choice”
phenomenon, to emphasize the point that i does not choose whether to become a B or a C until the final
reaction takes place. There are two reasons that it is interesting; firstly, there may be a sense in which this
phenomenon is related to the efficiency of the implementation, because the use of delayed choice may allow
for a smaller number of intermediate species in implementing the same CRN. Secondly, this phenomenon
actually does arise in actual systems, as presented in [8].

We note an important distinction between the various notions of equivalence discussed here and those
found in the Petri net literature. Whereas two Petri nets are compared for (reachability/trace/bisimulation)-
equivalence for a particular initial state [11], we are concerned about the various notions of equivalence of
two CRNs for all initial states. This distinction may limit the applicability of common verification method-
ologies and software tools [10, 1], since the set of initial states is by necessity always infinite (and the set of

1A → ∅ denotes a decaying reaction which consumes A and produces nothing.

4

reachable states from a particular initial state may also be infinite). Finally, we note that [13] proposes yet
another notion of equivalence based on serializability, which works on a limited class of implementations
in which there is not too much crosstalk between pathways implementing different formal reactions. Inter-
estingly, when restricted to such implementations, the notion of serializability and our notion of pathway
decomposition have a close (if not exact) correspondence.

Our approach (originally developed in [17]) differs from any of the above in that we ignore the target
CRN and pay attention only to the implementation CRN. Namely, we simply try to infer what CRN the
given implementation would look like in a hypothetical world where we cannot observe the intermediate
species. We call this notion “formal basis.” We show that not only is the formal basis unique for any valid
implementation, but it also has the nice property that a CRN that does not have any intermediate species
has itself as its formal basis. This leads us to a nice definition of CRN equivalence; we can simply declare
two CRNs to be equivalent if and only if they have the same formal basis. Therefore, unlike many other
approaches, our definition is actually an equivalence relation and therefore even allows for the comparison
of an implementation with another implementation.

3 Theory

3.1 Overview

In previous sections we saw that a reaction which is a single step in the target CRN gets implemented as
a pathway of reactions which involves intermediate species whose net effect only changes the number of
“formal” species molecules. For instance, the pathway A → i, i + B → j, j → C + k, k → D involves
intermediate molecules i, j, and k but the net effect of this pathway is to consume A and B and produce C
and D. In this sense this pathway may be viewed as an implementation of A + B → C + D.

In contrast, we will not want to consider the pathway A → i, i → B,B → j, j → C to be an
implementation of A → C, even though its net effect is to consume A and produce C. Intuitively, the
reason is that this pathway, rather than being an indivisible unit, looks like a composition of smaller unit
pathways each implementing A→ B and B → C.

The core idea of our definition, which we call pathway decomposition, is to identify all the pathways
which act as indivisible units in the above sense. The set of these “indivisible units” is called the formal basis
of the given CRN. If we can show that all potential pathways in the CRN can be expressed as compositions
of these indivisible units, then that will give us ground to claim that this formal basis may be thought of as
the target CRN that the given CRN is implementing.

3.2 Basic definitions

We use upper case and lower case letters to denote formal and intermediate chemical species, respectively.

Definition 1. A state is a multiset of species. If every species in a state S is a formal species, then S is
called a formal state.

Definition 2. If S is a state, Formal(S) denotes the multiset we obtain by removing all the intermediate
species from S.

Definition 3. A reaction is a pair of multisets of species (R,P) and it is trivial if R = P . Here, R is called
the set of reactants and P is called the set of products. We say that the reaction (R,P) can occur in the
state S if R ⊆ S. If both R and P are formal states, then (R,P) is called a formal reaction. If r = (R,P),
we will sometimes use the notation r̄ to denote the reverse reaction (P,R).

5

Definition 4. If (R,P) is a reaction that can occur in the state S, we write S⊕(R,P) to denote the resulting
state S −R + P . As an operator, ⊕ is left-associative.

Definition 5. A CRN is a (nonempty) set of nontrivial reactions. A CRN that contains only formal reactions
is called a formal CRN.

Definition 6. A pathway p of a CRN C is a (finite) sequence of reactions (r1, . . . , rk) with ri ∈ C for all i.
We say that a pathway can occur in the state S if all its reactions can occur in succession starting from S.
Note that given any pathway, we can find a unique minimal initial state associated with it. For convenience,
we will simply call it the initial state of the pathway. Correspondingly, the final state of a pathway will
denote the state S ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rk where S is the (minimal) initial state of the pathway. If both the
initial and final states of a pathway are formal, it is called a formal pathway. It is called trivial if its initial
state equals its final state. Note that the intermediate states within a formal pathway might not be formal!

To absorb these definitions, we can briefly study some examples. Consider the chemical reaction 2A +
B → C. According to our definitions, this will be written ({A,A,B}, {C}). Here, {A,A,B} is called
the reactants and {C} is called the products, just as one would expect. Note that this reaction can occur in
the state {A,A,A,B,B} but cannot occur in the state {A,B,C,C,C,C} because the latter state does not
have all the required reactants. If the reaction takes place in the former state, then the resulting state will be
{A,B,C} and thus we can write {A,A,A,B,B}⊕({A,A,B}, {C}) = {A,B,C}. In this paper, although
we formally define a reaction to be a pair of multisets, we will interchangeably use the chemical notation
whenever it is more convenient. For instance, we will often write 2A+B → C instead of ({A,A,B}, {C}).

Note that we say that a pathway p = (r1, r2, . . . , rk) can occur in the state S if r1 can occur in S, r2 can
occur in S ⊕ r1, r3 can occur in S ⊕ r1 ⊕ r2, and so on. For example, consider the pathway that consists of
2A + B → C and B + C → A. This pathway cannot occur in the state {A,A,B} because even though the
first reaction can occur in that state, the resulting state after the first reaction, which is {C}, will not have
all the reactants required for the second reaction to occur. In contrast, it is easy to see that this pathway can
occur in the state {A,A,B,B}.

We also point out that we cannot directly express a reversible reaction in this formalism. Thus, a re-
versible reaction will be expressed using two independent reactions corresponding to each direction, e.g.,
A
 B will be expressed as two reactions: A→ B and B → A.

Before we proceed, we formally define the notion of tidiness which we informally introduced in Section
1.

Definition 7. Let p be a pathway with a formal initial state and T its final state. Then, a (possibly empty)
pathway p′ = (r1, . . . , rk) is said to be the closing pathway of p if p′ can occur in T and T ⊕ r1 ⊕ · · · ⊕ rk
is a formal state. A CRN is weakly tidy if every pathway with a formal initial state has a closing pathway.

As was informally explained before, this means that the given CRN is always capable of cleaning up all
the intermediate species. For example, the CRN {A → i, i + B → C} will not be weakly tidy because if
the system starts from the state {A}, it can transition to the state {i} and become “stuck” in a non-formal
state: there does not exist a reaction to convert the intermediate species i back into some formal species.

For a more subtle example, let us consider the CRN {A → i + B, i + B → B}, which is weakly
tidy according to the definition as stated above. In fact, it is easy to see that this implementation CRN will
never get stuck when it is operating by itself, starting with any formal initial state. However, this becomes
problematic when we begin to think about composing different CRNs. Namely, when intermediate species
require other formal species in order to get removed, the implementation CRN may not work correctly if
some other formal reactions are also operating in the system. For instance, if the above implementation runs
in an environment that also contains the reaction B → C, then it is no longer true that the system is always
able to get back to a formal state.

6

This is not ideal because the ability to compose different CRNs, at least in the case where they do not
share any intermediate species, is essential for CRN implementations to be useful. To allow for this type of
composition, we define a stronger notion of tidiness which is preserved under such composition.

Definition 8. A closing pathway is strong if its reactions do not consume any formal species. A CRN is
strongly tidy if every pathway with a formal initial state has a strong closing pathway.

In the rest of the paper, unless indicated otherwise, we will simply say tidiness to mean strong tidiness.
Similarly, we will simply say closing pathway to mean strong closing pathway.

A→ i + j
i + j → B

strongly tidy

A→ i
i + B → C

not tidy

A→ i + D
D → E

E + i→ C

weakly tidy

Figure 2: Some examples of tidy and non-tidy CRNs

3.3 Pathway decomposition

Now we formally define the notion of pathway decomposition. Following our intuition from Section 3.1,
we first define what it means to implement a formal reaction.

Definition 9. We say that a pathway p = (r1, . . . , rk) implements a formal reaction (R,P) if it satisfies
the following conditions.

1. R = S and P = T , where S and T are the initial and final states of p.

2. Let Si = S ⊕ r1 ⊕ · · · ⊕ ri (so that S0, S1, . . . , Sk are all the states that p goes through). Then, there
exists a turning point reaction rj = (R′, P ′) such that Formal(Si) ⊆ S for all i < j, Formal(Si) ⊆ T
for all i ≥ j, and Formal(Sj−1 − R′) = ∅. When a formal pathway satisfies this condition, we call it
regular.

While the first condition is self-evident, the second condition needs a careful explanation. It asserts that
there should be a point in the pathway prior to which we only see the formal species from the initial state
and after which we only see the formal species from the final state. The existence of such a “turning point”
allows us to interpret the pathway as an implementation of the formal reaction (R,P) where in a sense the
real transition is occurring at that turning point. Importantly, this condition rules out such counterintuitive
implementations as (A→ i, i→ C+j, C+j → k, k → B) or (A→ i+B, i+B → j+A, j+A→ B) as
implementations of A→ B. Note that a formal pathway that consumes but does not produce formal species
prior to its turning point, and thereafter produces but does not consume formal species, is by this definition
regular, and this is the “typical case.” However our definition also allows additional flexibility; for example,
the reactants can fleetingly bind, as in {A→ i, i+B → j, j → B +k, k+B → C}. One may also wonder
why we need the condition Formal(Sj−1 − R′) = ∅. This is to prevent ambiguity that may arise in the
case of catalytic reactions. Consider the pathway (A → i + A, i → B). Without the above condition, both
reactions in this pathway qualify as a turning point, but the second reaction being interpreted as the turning
point is counterintuitive because the product A gets produced before the turning point.

One problem of the above definition is that it interprets the pathway (A → i, A → i, i → B, i → B)
as implementing A + A→ B + B. As explained in Section 3.1, we would like to be able to identify such a
pathway as a composition of smaller units.

7

Definition 10. A formal pathway p is decomposable if p can be partitioned into two nonempty subsequences
(which need not be contiguous) that are each formal pathways.

A pathway that is not decomposable is called prime. For clarity, note that when a sequence is partitioned
into two subsequences, no reordering is allowed. Also note that the decomposition of a formal pathway into
prime formal pathways need not be unique.

Definition 11. The set of prime formal pathways in a given CRN is called the elementary basis of the CRN.
The formal basis is the set of (initial state,final state) pairs of the pathways in the elementary basis. Note
that the elementary basis and/or the formal basis can be either finite or infinite. The elementary basis may
contain trivial pathways, and the formal basis may contain trivial reactions.

Definition 12. A CRN is regular if every prime formal pathway implements some formal reaction. Equiv-
alently, a CRN is regular if every prime formal pathway is regular.

Definition 13. Two tidy and regular CRNs are said to be pathway decomposition equivalent if their formal
bases are identical, up to addition or removal of trivial reactions.

3.4 Theorems

3.4.1 Properties

It is almost immediate that pathway decomposition equivalence satisfies many nice properties, some of
which are expressed in the following theorems.

Theorem 3.1. Pathway decomposition equivalence is an equivalence relation, i.e., it satisfies the reflexive,
symmetric, and transitive properties.

Theorem 3.2. If C is a formal CRN, its formal basis is itself.

Corollary 3.3. If C1 and C2 are formal CRNs, they are pathway decomposition equivalent if and only if
C1 = C2, up to removal or addition of trivial reactions.

Theorem 3.4. Any formal pathway of C can be generated by interleaving one or more prime formal path-
ways of C.

It is perhaps worth noting here that the decomposition of a formal pathway may not always be unique.
For example, the pathway (A → i, B → i, i → C, i → D) can be decomposed in two different ways:

A

B

i

j

k

D

l E

m F
A i

j

B

k E

B

C D

A i j i j B

C k D

{A + B → D + E, D → F} {A → B, C → D} {A → E, B + C → B + D}

Figure 3: Three examples of decomposable formal pathways and the formal bases of their corresponding
CRNs. The partition of reactions is marked by lines of different types and colors. In the right most example,
the decomposed pathway denoted by blue lines with circles (which shows up as A→ E in the formal basis)
is not regular, and therefore pathway decomposition equivalence does not apply.

8

(A → i, i → C) and (B → i, i → D), and (A → i, i → D) and (B → i, i → C). Pathway
decomposition differs from other notions such as (weak) bisimulation or (weak) trace equivalence in that
it allows such degeneracy of interpretations. We note that such degeneracy, which is closely related to the
previously mentioned delayed choice phenomenon, may permit a more efficient implementation of a target
CRN in terms of the number of species or reactions used in the implementation CRN. For example, if we
wish to implement the formal CRN consisting of the twelve reactions A
 B, A
 C, A
 D, B
 C,
B
 D and C
 D, it may be more efficient to implement it as the following eight reactions: A
 i,
B
 i, C
 i and D
 i.

The following theorems illuminate the relationship between a tidy and regular CRN C and its formal
basis F and how to better understand this degeneracy of interpretations.

Definition 14. We say a formal pathway p = (r1, . . . , rk) in C can be interpreted as a formal pathway
q = (s1, . . . , sl) in F if

1. q can occur in the initial state S of p,

2. S ⊕ r1 ⊕ · · · ⊕ rk = S ⊕ s1 ⊕ · · · ⊕ sl, and

3. there is a decomposition of p such that if we replace a selected turning point reaction of each prime
formal pathway (as implicitly defined in Section 3.3) with the corresponding element of F and remove
all other reactions, the result is q.

It is clear that the interpretation may not be unique, because there can be many different decompositions
of p as well as many different choices of the turning point reactions. One might also wonder why we do not
simply require that p and q must have the same initial states. This is because of a subtlety in the concept
of the minimal initial state, which arises due to a potential parallelism in the implementation. For instance,
consider the pathway (A → i, B → A, i → B). This pathway, which can be interpreted as two formal
reactions A → B and B → A occuring in parallel, has initial state {A,B}. However, no such parallelism
is allowed in the formal CRN and thus this pathway is forced to correspond to either (A→ B, B → A) or
(B → A, A→ B), neither of which has initial state {A,B}.

Theorem 3.5. Suppose C is a tidy and regular CRN and F is its formal basis.

1. For any formal pathway q in F , there exists a formal pathway p in C whose initial and final states are
equal to those of q, such that p can be interpreted as q.

2. Any formal pathway p in C can be interpreted as some pathway q in F .

Proof. 1. Replace each reaction in q with the corresponding prime formal pathway of C.

2. Fix a decomposition of p and pick a turning point for each prime formal pathway. Replace the turning
points with the corresponding formal basis element and remove all other reactions. We call the result-
ing pathway q. Then it suffices to show that q can occur in the initial state S of p. We show this by a
hybrid argument.
Define pj to be the pathway obtained by replacing the first j turning points in p by the corresponding
formal basis elements and removing all other reactions that belong to those prime formal pathways.
In particular, note that p0 = p and pl = q. We show that pj can occur in the initial state of pj−1 for
all j > 0. First, write pj−1 = (r1, . . . , rm) and pj = (ri1 , . . . , rik , sj , rik+1

, . . . , rin). Then it follows
from the definition of a turning point that Formal(S⊕ri1⊕· · ·⊕rix−1) ⊇ Formal(S⊕r1⊕· · ·⊕rix−1)
for every 1 ≤ x ≤ k. Therefore (ri1 , . . . , rik) can occur in S. (Note that we need not worry about the
intermediate species because (ri1 , . . . , rik) has a formal initial state.) Moreover, since the definition of
a turning point asserts that all the reactants must be consumed at the turning point, it also implies that
Formal(S ⊕ ri1 ⊕ · · · ⊕ rik) ⊇ Formal(S ⊕ r1⊕ · · · ⊕ rt−1−X +R) where rt = (X,Y) denotes the

9

turning point that is being replaced by sj in this round and R denotes the reactants of sj . Therefore,
sj can occur in S ⊕ ri1 ⊕ · · · ⊕ rik . Finally, it again follows from the definition of a turning point that
Formal(S ⊕ ri1 ⊕ · · · ⊕ rik ⊕ sj ⊕ rik+1

⊕ · · · ⊕ rix−1) ⊇ Formal(S ⊕ r1 ⊕ · · · ⊕ rix−1) for every
k + 1 ≤ x ≤ n. We conclude that (ri1 , . . . , rik , sj , rik+1

, . . . , rin) = p′j can occur in S.

It is interesting to observe that tidiness is not actually used in the proof of Theorem 3.5 above (nor in
that of Theorem 3.6 below), so that condition could be removed from the theorem statement. We retain the
tidiness condition to emphasize that this is when the theorem characterizes the behavior of the CRN; without
tidiness, a CRN could have many relevant behaviors that take place along pathways that never return to a
formal state, and these behaviors would not be represented in its formal basis.

In our final theorem we prove that pathway decomposition equivalence implies formal state reachability
equivalence. Note that the converse is not true because {A → B,B → C,C → A} is not pathway
decomposition equivalent to {A→ C,C → B,B → A}.

Theorem 3.6. If two tidy and regular CRNs C1 and C2 are pathway decomposition equivalent, they give rise
to the same reachability between formal states.

Proof. Suppose formal state T is reachable from formal state S in C1, i.e. there is a formal pathway p in
C1 whose initial state is S and final state is T . By Theorem 3.5, it can be interpreted as some pathway q
consisting of the reactions in the formal basis of C1. Since C1 and C2 have the same formal basis, by another
application of Theorem 3.5, there exists some formal pathway p′ in C2 that can be interpreted as q. That is,
the initial and final states of p′ are S and T respectively, which implies that T is reachable from S in C2 also.
By symmetry between C1 and C2, the theorem follows.

3.4.2 Modular composition of CRNs

In this section, we prove theorems that show that pathway decomposition equivalence is preserved under
composition of CRNs, as long as those CRNs do not share any intermediate species.

Theorem 3.7. If C and C′ are two tidy CRNs that do not share any intermediate species, then C ∪ C′ is also
tidy.

Proof. Suppose p is a pathway of C∪C′ that has a formal initial state. Since C and C′ do not share intermedi-
ate species, we can partition the intermediate species found in the final state of p into two multisets A and A′,
corresponding to the intermediate species used by C and C′ respectively. Now, if we remove from p all the
reactions that belong to C′ and call the resulting pathway q, then the multiset of all the intermediate species
found in the final state of q will be exactly A. This is because the removed reactions, which belonged to C ′,
cannot consume or produce any intermediate species used by C. Since C is tidy, q has a closing pathway r.
This time, remove from p all the reactions that belong to C and call the resulting pathway q′. By a symmetric
argument, q′ must have a closing pathway r′. Now observe that r + r′ is a closing pathway for p.

Theorem 3.8. If C and C′ are two regular CRNs that do not share any intermediate species, then C ∪ C′ is
also regular.

Proof. Let p be a prime formal pathway in C∪C′. Partition p into two subsequences q and q′, which contains
all reactions of p which came from C and C′ respectively. Since the two CRNs do not share any intermediate
species, it is clear that q and q′ must both be formal. Since p was prime, it implies that one of q and q′ must
be empty. Therefore, p is indeed a prime formal pathway in either C or C′, and since each was a regular
CRN, p must be regular.

10

Theorem 3.9. Let C and C′ be two tidy and regular CRNs that do not share any intermediate species, and F
and F ′ their formal bases respectively. Then the formal basis of C ∪ C′ is exactly F ∪ F ′.

Proof. Let p be a prime formal pathway in C ∪ C′. By the same argument as in the proof of Theorem 3.8, p
is a prime formal pathway of either C or C′. Therefore, the formal basis of C ∪ C′ is a subset of F ∪F ′. The
other direction is trivial.

4 Algorithm

In this section, we present a simple algorithm for finding the formal basis of a given CRN. The algorithm
can also test tidiness and regularity.

Our algorithm works by enumerating pathways that have formal initial states. The running time of our
algorithm depends on a quantity called maximum width, which can be thought of as the size of the largest
state that a prime formal pathway can ever generate. Unfortunately it is easy to see that this quantity is
generally unbounded; e.g., {A→ i, i→ i + i, i→ ∅} has a finite formal basis {A→ ∅} but it can generate
arbitrarily large states.2 However, since such implementations are highly unlikely to arise in practice, in this
paper we focus on the bounded width case. We note that even in the bounded width case it is still nontrivial
to come up with an algorithm that finishes in finite time, because it is unclear at what width we can safely
stop the enumeration.

4.1 Exploiting bounded width

We begin by introducing a few more definitions and theorems.

Definition 15. A pathway that has a formal initial state is called semiformal.

Definition 16. A semiformal pathway p is decomposable if p can be partitioned into two nonempty subse-
quences (which need not be contiguous) that are each semiformal pathways.

It is obvious that this reduces to our previous definition of decomposability if p is a formal pathway.

Definition 17. Let p = (r1, . . . , rk) be a pathway and let Si = S ⊕ r1 ⊕ · · · ⊕ ri where S is the initial state
of p. The width of p is defined to be maxi |Si|.

Definition 18. The branching factor of a CRN C is defined to be the following value.

max
(R,P)∈C

max{|R|, |P |}

We note that many implementations that arise in practice have small branching factors.

Theorem 4.1. Suppose that pathway p is obtained by interleaving pathways p1, . . . , pl. Let S be the initial
state of p and S1, . . . , Sl the initial states of p1, . . . , pl respectively. Then, S ⊆ S1 + S2 + · · ·+ Sl.

Theorem 4.2. If p is an undecomposable semiformal pathway of width w > 0, there exists an undecompos-
able semiformal pathway of width smaller than w but at least (w − b)/b, where b is the branching factor of
the CRN. (Note that if w is small, the lower bound (w − b)/b might be negative. In this case, it would sim-
ply mean that there exists an undecomposable semiformal pathway of width 0, which would be the empty
pathway.)

2Clearly, there may also be cases where the formal basis itself is infinite, e.g. {A → i, i → i+ i, i → B}.

11

Proof. Since w > 0, p is nonempty. Let p−1 denote the pathway obtained by removing the last reaction
(R,P) from p. Also, let S0, . . . , Sk be the states that p goes through, and S′0, . . . , S

′
k−1 the states that p−1

goes through. Si is potentially unequal to S′i because if the last reaction in p consumes some new formal
species, then the minimal initial state of p−1 might be smaller than that of p.

It is obvious that the minimal initial state of p−1 is smaller than the minimal initial state of p by at most
|R|, i.e., |S0| − |S′0| ≤ |R|. This means that for all 0 ≤ i ≤ k− 1, we have that |Si| − |S′i| ≤ |R|. Clearly, if
there exists some 0 ≤ i ≤ k − 1 such that |Si| = w, then |S′i| ≥ |Si| − |R| = w − |R| ≥ w − b, so p−1 has
width at least w−b. If there exists no such i, then we have that |Sk| = w. Clearly, |Sk−1| = |Sk|−|P |+ |R|
and it follows that

|Sk| − |P |+ |R| − |S′k−1| = |Sk−1| − |S′k−1| ≤ |R|.

This is equivalent to |Sk| − |S′k−1| ≤ |P |. Since |Sk| = w, we have that |S′k−1| ≥ w − |P | ≥ w − b. Thus,
p−1 achieves width at least w − b.

Then, we decompose p−1 until it is no longer decomposable. As a result, we will end up with l ≥ 1
undecomposable pathways p1, p2, . . . , pl which by interleaving can generate p−1. Also, they are all semi-
formal. First, we show that l is at most b. Assume towards a contradiction that l > b. Then, by the
pigeonhole principle, there exists i such that (R− Formal(R), P) can occur in the sum of the final states of
p1, . . . , pi−1, pi+1, . . . , pl (since |R − Formal(R)| ≤ b and (R − Formal(R), P) can occur in the sum
of the final states of p1, . . . , pl, the at most b reactants of (R − Formal(R), P) are distributed among
l > b pathways and there exists at least one pi that does not provide a reactant and can be omitted).
Then, consider the decomposition (pi, p

′
i) of p−1 where p′i denotes the pathway we obtain by interleav-

ing p1, . . . , pi−1, pi+1, . . . , pl in the same order that those reactions occur in p−1. By Theorem 4.1, p′i is
semiformal. Since pj’s are all semiformal, this means that the intermediate species in the final state of p′i
will be exactly the same as those in the sum of the final states of p1, . . . , pi−1, pi+1, . . . , pl. That is, the
final state of p′i contains all the intermediate species that (R,P) needs to occur, i.e., p′i with (R,P) ap-
pended at the end should have a formal initial state. However, this means that p is decomposable which is a
contradiction. Hence, l ≤ b.

Now, note that if we have l pathways each with widths w1, . . . , wl, any pathway obtained by interleaving
them can have width at most

∑l
i=1wi. Since p−1 had width at least w − b, we have that w − b ≤

∑l
i=1wi.

Then, if wi < (w − b)/b for all i, then
∑l

i=1wi < w − b, which is contradiction. Thus, we conclude that
at least one of p1, . . . , pl has width greater than or equal to (w − b)/b. It is also clear that its width cannot
exceed w. Thus, we have found a pathway p′ which

1. has a smaller length than p, and

2. has width at least (w − b)/b and at most w.

If p′ has width exactly w, then we have failed to meet the requirements of the claim. However, since we have
decreased the length of the pathway by at least one, and the width of a zero-length pathway is always 0, we
can eventually get a smaller width than w by repeating this argument. The first time that the width decreases,
we will have found a pathway p′ that satisfies the theorem statement, because in that case conditions (1) and
(2) must hold by the arguments above.

Corollary 4.3. Suppose w and wmax are integers such that (w + 1)b ≤ wmax. Then, if there is no unde-
composable semiformal pathway of width greater than w and less than or equal to wmax, then there exists no
undecomposable semiformal pathway of width greater than w.

Proof. Assume towards a contradiction that there exists an undecomposable semiformal pathway p of width
w′ > w. If w′ ≤ wmax, then it is an immediate contradiction. Thus, assume that w′ > wmax. By Theorem
4.2, we can find a smaller undecomposable semiformal pathway q of width v where (w′ − b)/b ≤ v < w′.
Since w′ > wmax, we have that v ≥ (w′ − b)/b > (wmax − b)/b ≥ ((w + 1)b − b)/b = w. If v ≤ wmax,

12

we have a contradiction. If v > wmax, then take q as our new p and repeat the above argument. Since v is
smaller than w′ by at least one, we will eventually reach a contradiction.

Thus, there exists no undecomposable semiformal pathway of width greater than w.

4.2 Overview

While Corollary 4.3 gives us a way to exploit the bounded width assumption, it is still unclear whether the
enumeration can be made finite, because the number of undecomposable semiformal pathways of bounded
width may still be infinite. For an easy example, if the CRN consists of {A → i, i → j, j → i, j → B},
we have infinitely many undecomposable semiformal pathways of width 1, because after the initial reaction
A→ i, the segment i→ j, j → i can be repeated arbitrarily many times without ever making the pathway
decomposable. In this section, we sketch at high level how this difficulty is resolved in our finite-time
algorithm.

The principal technique that lets us avoid infinite enumeration of pathways is memoization. To use
memoization, we first define what is called the signature of a pathway, which is a collection of information
about many important properties of the pathway, such as its initial and final states, decomposability, etc.
It turns out that the number of possible signatures of bounded width pathways is always finite, even if the
number of pathways themselves may be infinite. This means that the enumeration algorithm does not need
to duplicate pathways with the same signatures, provided the signatures alone give us sufficient information
for determining the formal basis and for testing tidiness and regularity of the CRN.

Therefore, the algorithm consists in enumerating all semiformal pathways of width up to (w + 1)b,
where w is the maximum width of the undecomposable semiformal pathways discovered so far, while ex-
cluding pathways that have the same signatures as previously discovered pathways. It is important to em-
phasize that no a priori knowledge of the width bound is assumed, and the algorithm is guaranteed to halt as
long as there exists some finite bound. While the existence of this algorithm shows that the problem of find-
ing the formal basis is decidable with the bounded width assumption, the worst-case time complexity seems
to be adverse as is usual for algorithms based on exhaustive search. It is an open question to understand
the computational complexity of this problem as well as to find an algorithm that has better practical perfor-
mance. Another important open question is whether the problem without the bounded width assumption is
decidable.

4.3 Signature of a pathway

While Corollary 4.3 gives us a way to make use of the bounded width assumption, it is still unclear
whether the enumeration can be made finite, because the number of undecomposable semiformal pathways
of bounded width may still be infinite. To resolve this problem, we need to define a few more concepts.

Definition 19. Let p be a semiformal pathway. The decomposed final states (DFS) of p is defined as the
set of all unordered pairs (T1, T2) that can be obtained by decomposing p into two semiformal pathways and
taking their final states. Note that for an undecomposable pathway, the DFS is the empty set.

Definition 20. Let p = (r1, . . . , rk) be a semiformal pathway. Also, let Si = S ⊕ r1 ⊕ · · · ⊕ ri where
S is the initial state of p. The formal closure of p is defined as the unique minimal state S′ such that
Formal(Si) ⊆ S′ for all i.

Definition 21. The regular final states (RFS) of p is defined as the set of all minimal states T such that
there exists a potential turning point reaction rj = (R,P) which satisfies Formal(Si) ⊆ S for all i < j,
Formal(Si) ⊆ T for all i ≥ j, and Formal(Sj−1 −R) = ∅.

13

Some explanation is in order. Although the RFS definition applies equally to semiformal pathways that
are or could be regular, and to semiformal pathways that are not and cannot be regular, the RFS provides
a notion of “what the final state would/could be if the pathway were regular”. As examples, first consider
the semiformal pathway (A → i, B + i → j, j → X + k). The second and third reactions are potential
turning points, and the RFS is {X}. One can easily check that if the pathway were to be completed in a way
that its final state does not contain X , the resulting pathway cannot be regular (e.g. were it to be closed by
X +k → Y , the pathway becomes irregular). Now consider (A→ i, i→ B+ j, B+ j → k). Only the first
two reactions are potential turning points, and the RFS is {B}. One can also check in this case that the only
way that this semiformal pathway can be completed as a regular pathway is for it to have B in its final state.
Finally consider (A→ i, i→ A + j, A + j → B), which is in fact a regular formal pathway implementing
A→ B. Because every reaction is a potential turning point by our definition, the RFS is {A + B,B}. One
of these states is the actual final state, corresponding to the actual turning point, and therefore we can see
that this formal pathway is regular.

Definition 22. The signature of the pathway is defined to be the 6-tuple of the initial state, final state, width,
formal closure, DFS, and RFS.

Theorem 4.4. If m is any finite number, the set of signatures of all semiformal pathways of width up to m
is finite.

Proof. Clearly, there is only a finite number of possible initial states, final states, widths, formal closures,
and RFS. Also, since there is only a finite number of possible final states, there is only a finite number of
possibilities for DFS.

Theorem 4.5. Suppose p1 and p2 are two pathways with the same signature. Then, for any reaction r,
p1 + (r) and p2 + (r) also have the same signature.

Proof. Let p′1 = p1 + (r) and p′2 = p2 + (r). It is trivial that p′1 and p′2 have the same initial and final states,
formal closure, and width.

First, we show that p′1 and p′2 have the same DFS. Suppose (T1, T2) is in the DFS of p′1. That is, there
exists a decomposition (q′1, q

′
2) of p′1 where q′1 and q′2 have final states T1 and T2. The last reaction r is

either contained in q′1 or q′2. Without loss of generality, suppose the latter is the case. Then, if q1 = q′1 and
q2 + (r) = q2, then (q1, q2) should decompose p1, which is a prefix of p′1. Since p1 and p2 have the same
DFS, there should be a decomposition (s1, s2) of p2 that has the same final states as q1 and q2. Clearly,
(s1, s2 + (r)) should be a decomposition of p′2 and thus (T1, T2) is also in the DFS of p′2. By symmetry, it
follows that p′1 and p′2 have the same DFS.

Now we argue that p′1 and p′2 should have the same RFS. Suppose T is contained in the RFS of p′1.

1. If the potential turning point for T in p′1 is the last reaction r, with r = (R,P), then it must be the
case that T = Formal(P). Because p2 has the same formal closure and final state as p1, which was
sufficient to ensure that r was a valid potential turning point in p′1, r will also be a valid potential
turning point in p′2. Consequently, T is also in the RFS of p′2.

2. Otherwise, the potential turning point reaction for T in p′1, call it t = (R,P), also appears in p1. Since
the initial state of p1 must be a subset of the initial state of p′1, t is also a potential turning point for
p1. Since “midway through” the potential turning point reaction, all formal species must be gone, we
conclude that in fact p1 and p′1 have the same initial state. That is, R contains no formal species that
aren’t already in the final state of p1. Thus, all shared states after t are the same, and some subset T ′

of T must be contained in the RFS of p1. By assumption, T ′ is also in the RFS of p2, and p2 has the
same final state as p1. Since R contains no formal species that aren’t already in the final state of p2, the
initial states of p2 and p′2 are the same. Consequently, the potential turning point of p2 corresponding
to T ′ is also a potential turning point for p′2. This ensures that T is in the RFS for p′2.

14

Theorem 4.6. A pathway p is a prime formal pathway if and only if its signature satisfies the following
conditions:

1. The initial and final states are formal.

2. The DFS is the empty set.

4.4 Algorithm for enumerating signatures

It is now clear that we can find the formal basis by enumerating the signatures of all undecomposable
semiformal pathways. In this section we present a simple algorithm for achieving this.

function enumerate(p, w, ret)
if p is not semiformal or has width greater than w then return ret
sig = signature of p
if sig is in ret then return ret
add sig to ret
for every reaction rxn

ret = enumerate(p + [rxn], w, ret)
end for
return ret

end function

function main()
w_max = 0
b = branching factor of the given CRN
while true

signatures = enumerate([], w_max, {})
w = maximum width of an undecomposable pathway in signatures
if (w+1)*b <= w_max then break
w_max = (w+1)*b

end while
return signatures

end function

The subroutine enumerate is a function that enumerates the signatures of all semiformal pathways of
width at most w. Note that it uses memoization to avoid duplicating pathways that have identical signatures,
as justified by Theorem 4.5. Because of this memoization, Theorem 4.4 ensures that this subroutine will
terminate in finite time.

The subroutine main repeatedly calls enumerate, increasing the width bound according to Corollary
4.3. It is obvious that main will terminate in finite time if and only if there exists a bound to the width of
an undecomposable semiformal pathway.

It is out of scope of this paper to attempt theoretical performance analysis of this algorithm or to study
the computational complexity of finding the formal basis. While there are obvious further optimizations
by which the performance of the above algorithm can be improved, we meet our goal of this paper in
demonstrating the existence of a finite time algorithm and leave further explorations as a future task.

15

4.5 Testing tidiness and regularity

Finally, we discuss how to use the enumerated signatures to test tidiness and regularity of the given CRN.

Theorem 4.7. A CRN is tidy if and only if every undecomposable semiformal pathway has a closing path-
way.

Proof. The forward direction is trivial. For the reverse direction, we show that if a CRN is not tidy, there
exists an undecomposable semiformal pathway that does not have a closing pathway.

By definition, there exists a semiformal pathway p that does not have a closing pathway. Consider a
minimal-length example of such a pathway. If p is undecomposable, then we are done. So suppose that p
is decomposable into two semiformal pathways p1 and p2. By the minimality of p, both pathways p1 and
p2 must have closing pathways. However, since the final state of p has the same intermediate species as the
sum of the final states of p1 and p2 (by Theorem 4.1 and the fact that p1 and p2 are semiformal), the two
closing pathways concatenated will be a closing pathway of p (because a closing pathway does not consume
any formal species). This contradicts that p does not have a closing pathway, and thus we conclude that the
case where p is decomposable is impossible.

Theorem 4.8. Let p be an undecomposable semiformal pathway that has a closing pathway. Then p also
has a closing pathway q such that p + q is undecomposable.

Proof. Let q be a minimal-length closing pathway for p. Note that p + q is a formal pathway. If p + q is
undecomposable, we are done. So suppose that p + q decomposes into two formal pathways p1 and p2,
which by definition must both be nonempty. Then it must be the case that one of p1 or p2 contains all the
reactions of p, because otherwise p must be decomposable as well. Without loss of generality, suppose p1
contains all the reactions of p. Then p2 consists only of reactions from q. This means that the reactions
of q that went into p1 constitute a shorter closing pathway q for p, contradicting the minimality of q. We
conclude that p + q must have been undecomposable.

To test tidiness, we attempt to find a closing pathway for each undecomposable semiformal pathway p
enumerated by the main algorithm. Theorem 4.7 ensures that it suffices to consider only these pathways.
We do this by enumerating the signatures of all semiformal pathways of the form p+q where q is a pathway
that does not consume a formal species, but only those of width up to wmax (wmax is the maximum width of
the undecomposable semiformal pathways discovered by the main algorithm). Theorem 4.8 ensures that it
is safe to enforce this width bound.

The testing of regularity is trivial, using the following theorem.

Theorem 4.9. A prime formal pathway is regular if and only if its RFS contains its final state.

Proof. The potential turning point corresponding to the final state proves regularity. If the final state is
lacking in the RFS, then none of the potential turning points qualify as a turning point and the pathway is
not regular.

We emphasize that these methods work only because of the bounded width assumption we made on
undecomposable semiformal pathways. Without this assumption, it is unclear whether these problems still
remain decidable.

5 Handling the general case

In this section, we discuss some important issues that pertain to practical applications and hint at the possi-
bility of further theoretical investigations.

16

As we briefly mentioned earlier, many CRN implementations that arise in practice involve not only
formal and intermediate species but also what are called fuel and waste species. Fuel species are chemical
species that are assumed to be always present in the system at fixed concentration, as in a buffer. For
instance, DNA implementations [18, 2, 16] often employ fuel species that are present in the system in large
concentrations and have the ability to transform formal species into various other intermediates. This type
of “implementation” is also prevalent in biological systems, where the concentrations of energy-carrying
species such as ATP, synthetic precursors such as NTPs, and general-purpose enzymes such as ribosomes
and polymerases, are all maintained in roughly constant levels by the cellular metabolism.

In CRN verification, the standard approach to fuel species is to preprocess implementation CRNs such
that all occurrences of fuel species are simply removed. For instance, if the CRN contained reaction A+g →
i + t where g and t are fuel species, the preprocessed CRN will only have A→ i. The justification for this
type of preprocessing is that since fuel species are always present in the system in large concentrations by
definition, consuming or producing a finite number of fuel species molecules do not have any effect on
the system. While no formal justification has been established for this technique, it is nevertheless widely
accepted in the field at the present time.

On the other hand, implementations sometimes produce “waste” species as byproducts. Waste species
are supposed to be chemically inert and thus cannot have interaction with other formal or intermediate
species. However, in practice it is often difficult to implement a chemical species which is completely inert
and therefore they may interact with other species in trivial or nontrivial ways. Therefore the main challenge
is to ensure that these unwanted interactions do not give rise to a logically erroneous behavior. One way to
deal with this problem is to define some formal notion of waste and preprocess those species classified as
wastes in a similar manner to fuel species, but it has been difficult to arrive at a definition of waste that is
completely satisfactory to all.

Another related problem which must be solved before we can use pathway decomposition is that some
implementations may have multiple chemical species that are interpreted as the same formal species. (For
example, see DNA implementations [18, 2] with “history domains.”) Since our mathematical framework
implicitly assumes one-to-one correspondence between formal species of the target CRN and formal species
of the implementation CRN, it is not immediately clear how we can apply our theory in such cases.

Interestingly, the weak bisimulation-based approach to CRN equivalence proposed in [5] does not seem
to suffer from any of these problems. This is mainly because this approach in fact does not have any
particular distinction between these different types of species except fuel species. Rather, it requires that
there must be a way to interpret each species that appears in the implementation CRN as one or more formal
species. For instance, if {A
 i, B + i
 j, j → C} is proposed as an implementation of A + B → C,
the weak bisimulation approach will interpret A and i as {A}, B as {B}, j as {A,B}, and C as {C}.
Therefore the state of the system at any moment will have an instantaneous interpretation as some formal
state, which is not provided by pathway decomposition. On the other hand, the weak bisimulation approach
cannot handle interesting phenomena that are allowed in the pathway decomposition approach, most notably
the delayed choice phenomenon explained in Section 2.

Our proposed solution to the problem of wastes and multiple formal labeling is a hybrid approach be-
tween weak bisimulation and pathway decomposition. Namely, we take the implementation CRN from
which only the fuel species have been preprocessed, and tag as “formal” species all the species that have
been labeled by the user as either an implementation of a target CRN species or a waste. All other species
are tagged as “intermediates”. Then we can apply the theory of pathway decomposition to find its formal
basis (with respect to the tagging, as opposed to the smaller set of species in the target CRN). Note that
waste species must be tagged as “formal” rather than “intermediate” because they will typically accumulate,
and thus tagging them as “intermediate” would result in a non-tidy CRN to which pathway decomposition
theory does not apply. Finally, we verify that the resulting formal basis of tagged species is weak bisimula-
tion equivalent to the target CRN under the natural interpretation, which interprets implementations of each

17

target CRN species as the target CRN species itself and wastes as “null.” If the implementation is incorrect,
or if some species was incorrectly tagged as “waste”, the weak bisimulation test will fail. See Figure 4 for
example.

A1 → i
i→ B1 + W

A2 → j
j → B2

W + j → B1

Implementation CRN

A1 → B1 + W
A2 → B2

A2 + W → B1

Formal basis

A→ B

Under weak bisimulation

Figure 4: The hybrid approach for verifying an implementation of the formal CRN {A → B}. We first
apply pathway decomposition, treating the upper case species as formal species and lower case species as
intermediate species. Then, we apply weak bisimulation using the natural interpretation which interprets
A1 and A2 as {A}, B1 and B2 as {B}, and W as ∅. Thus, in two steps, the implementation CRN has been
shown to be a correct implementation of {A→ B}.

On the other hand, we note that the weak bisimulation approach can sometimes handle interesting cases
which pathway decomposition cannot. For instance, the design proposed in [16] for reversible reactions
implements A + B
 C + D as {A
 i, i + B
 j, j
 k + C, k
 D}. Note that this implementation
CRN is not regular according to our theory because of the prime formal pathway A → i, i + B → j, j →
k + C, k + C → j, j → i + B, i → A. Interestingly, this type of design seems to directly oppose the
foundational principles of the pathway decomposition approach. One of the key ideas that inspired pathway
decomposition is that of “base touching,” namely the idea that even though the evolution of the system
involves many intermediate species, a pathway implementing a formal reaction must eventually produce all
its formal products and thus “touch the base.” This principle is conspicuously violated in the above pathway,
because while the only intuitive way to interpret it is as A + B → C + D and then C + D → A + B, the
first part does not touch the base by producing a D molecule. In contrast, the weak bisimulation approach
naturally has no problem handling this implementation: i is interpreted as {A}, j is interpreted as {A,B},
and k is interpreted as {D}.

The fact that the two approaches are good for different types of instances motivates us to further gen-
eralize the hybrid approach explained above. Formally, we can define the generalized hybrid approach as
follows.

Definition 23. Suppose we are given a target CRN C1 and an implementation CRN C2. Let F and S denote
the species of C1 and C2 respectively. Let X ⊆ S be the set of species that have been labeled by the user
as implementations of target CRN species or wastes. In the hybrid approach, we say C2 is a correct
implementation of C1 if there exists some X ⊆ V ⊆ S such that

1. C2 with respect to V as formal species is tidy and regular, and

2. the formal basis of C2 with respect to V as formal species is weak bisimulation equivalent to C1 under
some interpretation that respects the labels on X provided by the user.

The flexibility to vary V can be useful: for example, intermediates that are involved in “delayed choice”
pathways can be kept out of V so as to be handled by pathway decomposition, whereas intermediates in-
volved in the aforementioned reversible reaction pathways can be retained within V so as to be handled by
weak bisimulation.

18

Note that the weak bisimulation approach provides an “interpretation map” m from V to states of C1
[5]. Although the domain of m is V , there is an obvious sense in which we can apply it to formal states,
formal reactions, or pathways consisting of formal reactions, e.g., m(S) =

∑
x∈S m(x) for a state S,

m((R,P)) = (m(R),m(P)) for a reaction (R,P), etc. To prove a theorem that provides justification for
the hybrid approach, we first extend the notion of interpretation of pathways that we introduced in Section
3.4 to include this concept of interpretation map.

Definition 24. Suppose m is a map from V to states of C1, where V is the set of formal species of C2. We
say a formal pathway p = (r1, . . . , rk) in C2 can be interpreted as a formal pathway q = (s1, . . . , sl) in C1
under m if

1. q can occur in m(S), where S is the initial state of p,

2. m(S ⊕ r1 ⊕ · · · ⊕ rk) = m(S)⊕ s1 ⊕ · · · ⊕ sl, and

3. there is a decomposition of p such that if we replace the turning point reaction of each prime formal
pathway with the corresponding element of C1 (i.e. the corresponding formal basis reaction mapped
through m) and remove all other reactions, then the resulting pathway is equal to q up to addition or
removal of trivial reactions.

Theorem 5.1. Suppose an implementation CRN C2 is a correct implementation of the target CRN C1 accord-
ing to the hybrid approach. Then, there exists a mapping m from V to states of C1 such that the following
two conditions hold.

1. Let q and S be a pathway and a state in C1 such that q can occur in S. Then, for any state S′ that uses
species from V such that m(S′) = S, there exists a formal pathway p in C2 that can occur in S′ and
can be interpreted as q under m.

2. Any formal pathway p in C2 can be interpreted as some pathway q in C1 under m.

Proof. Let m be the interpretation map provided by the weak bisimulation equivalence [5], and I the formal
basis of C2 with respect to V as formal species.

1. By the equivalence theorem in Section 2.3 of [5], we have a pathway p′ in I that can occur in S′ and
m(p′) = q. Now replace each reaction in p′ by the prime formal pathway that implements that reaction
and call the resulting pathway p. Clearly, p can occur in S′. To show that p can be interpreted as q
under m, observe that the first condition of Definition 24 follows from the fact that q can clearly occur
in m(S′) and S′ is a superset of the initial state of p (because p can occur in S′). Since p and p′ have the
same initial and final states and m(p′) = q, we also satisfy the second condition. The final condition
trivially follows from the way p was constructed and the fact that m(p′) = q.

2. By Theorem 3.5, p can be interpreted as some pathway p′ in I. Let q be the pathway we obtain by
removing all the trivial reactions from m(p′). Now we show that p can be interpreted as q under m.
For the first condition of Definition 24, use the equivalence theorem in Section 2.3 of [5] to see that
q can occur in m(S), where S is the initial state of p′ and therefore also of p. The second condition
follows immediately from the way q was constructed and the fact that p and p′ have the same net effect.
The final condition follows from the fact that p can be interpreted as p′ in I and that m(p′) = q up to
removal of trivial reactions.

The above theorem provides a sense in which the hybrid definition is a good notion, similar to one
provided by Theorem 3.5. While this approach seems to be the most general approach proposed thus far in
terms of the range of implementations that it can address, its exact capabilities are not completely understood
at present. Probing the potential of this approach is an important open question.

19

6 Conclusions

In this paper, we studied the problem of formal verification of CRN implementations, and proposed a so-
lution which is unique and distinctive in its concept of equivalence compared with the traditional formal
verification methods such as state reachability equivalence, trace equivalence, serializability [13], or (weak)
bisimulation [5]. We further showed how our approach can be combined with weak bisimulation to handle
a wider class that, to our best knowledge, includes all currently known enzyme-free DNA implementation
techniques. This is in contrast with traditional verification methods, each of which falls short in this respect.

While we focused almost exclusively on the theoretical aspects of the problem in this paper, we mention
that an earlier incarnation of this theory has been implemented and tested in practice for DNA-based imple-
mentations [17]. To do this, the formal basis enumeration algorithm was implemented and interfaced with
other software pieces that together form the verification pipeline. First, the given target CRN was converted
into a set of DNA molecules using the BioCRN (now called Nuskell) compiler presented in [17]. Second, all
the reactions that can occur between these DNA molecules were enumerated using an early version of the
domain-level DNA reaction enumerator described in [8]. From these reactions, the fuel and waste species
were filtered out using the definition of waste species also proposed in [17]. The remaining reactions form
the implementation CRN. Finally, the formal basis enumerator was run on the implementation CRN to see
if it yields a formal basis that is equal to the target CRN. Despite the apparent brute-force nature, the al-
gorithm successfully tested implementation CRNs of size up to one hundred reactions (the implementation
CRN is typically an order of magnitude larger than the corresponding target CRN). Interestingly, the algo-
rithm finished in less than a second for most test cases, whereas there were certain implementations that had
a tendency to blow up the search space (i.e. number of possible signatures) and make the algorithm fail to
halt in three hours even though the size of the implementation CRN was comparable.

Concluding the paper, we quickly sketch major open questions remaining in the area.

1. In the domain-level reaction enumerator described in [8], a pathway consisting of multiple reaction
steps will in some cases be “condensed” to yield a single-step reaction. It is tempting to try to use
our theory to formally prove that this condensation step is “correct,” because it seems that the weak
bisimulation approach cannot handle this problem in its full generality. (As shown in [8], there are
DNA constructions which yield CRNs of the form {A + B → i, i → j, i → k, j → C + D, k →
X + Y }, which clearly exhibits the delayed choice phenomenon.)

2. Can we better understand the delayed choice phenomenon? As we mentioned before, it seems that
there should be a sense in which this phenomenon is related to the efficiency of the implementation,
especially in terms of the number of intermediate species used in an implementation. Can we identify
cases where this phenomenon naturally arises and find a practical use for it? Could there be some
sense of an “optimizing compiler” which makes use of this phenomenon?

3. What is the computational complexity of the problem of finding the formal basis of a given CRN (for
both bounded and unbounded width cases)? Can we improve upon the algorithm presented herein?

4. Can we better understand the “hybrid approach” proposed in Section 5? What is the class of imple-
mentations it can handle? Is there a notion of equivalence which is even more general? Is there an
efficient algorithm for testing hybrid equivalence? Can we show that preprocessing to remove fuels
from the implementation CRN is equivalent to tagging them as “formal” and then removing them in a
post processing step?

5. Can we incorporate chemical kinetics into existing theories of CRN verification? (See [3] for recent
developments.)

20

Acknowledgments

We appreciate helpful discussions with John Baez, Luca Cardelli, Vincent Danos, and Robert Johnson.
S.W.S. was supported by California Institute of Technology’s Summer Undergraduate Research Fellowship
2009, NSF grant CCF-0832824, ARO Grant W911NF-09-1-0440 and NSF Grant CCF-0905626. C.T. was
supported by NSF grant CCF-1213127 and an NSERC Banting Fellowship. E.W. was supported by NSF
grants CCF-0832824, CCF-1213127, and CCF-1317694.

References

[1] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength verification tool. In Computer
Aided Verification, pages 24–40. Springer, 2010.

[2] L. Cardelli. Strand algebras for DNA computing. Natural Computing: an international journal,
10(1):407–428, 2011.

[3] L. Cardelli. Morphisms of reaction networks that couple structure to function. Manuscript, 2014.
[4] Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and G. Seelig. Pro-

grammable chemical controllers made from DNA. Nature nanotechnology, 8(10):755–762, 2013.
[5] Q. Dong. A bisimulation approach to verification of molecular implementations of formal chemical

reaction networks. Master’s thesis, Stony Brook University, 2012.
[6] S. M. Douglas, I. Bachelet, and G. M. Church. A logic-gated nanorobot for targeted transport of

molecular payloads. Science, 335(6070):831–834, 2012.
[7] J. Esparza and M. Nielsen. Decidability issues for Petri nets. Petri nets newsletter, 94:5–23, 1994.
[8] C. Grun, K. Sarma, B. Wolfe, S. W. Shin, and E. Winfree. A domain-level DNA strand displacement

reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. In VEMDP, 2014.
[9] H. Gu, J. Chao, S.-J. Xiao, and N. C. Seeman. A proximity-based programmable DNA nanoscale

assembly line. Nature, 465(7295):202–205, 2010.
[10] G. J. Holzmann. The model checker SPIN. IEEE Transactions on software engineering, 23(5):279–

295, 1997.
[11] P. Jančar, J. Esparza, and F. Moller. Petri nets and regular processes. Journal of Computer and System

Sciences, 59(3):476–503, 1999.
[12] M. R. Lakin and A. Phillips. Visual DSD. Microsoft Research.
[13] M. R. Lakin, A. Phillips, and D. Stefanovic. Modular verification of DNA strand displacement net-

works via serializability analysis. In Proceedings of the 19th International Conference on DNA Com-
puting and Molecular Programming, 2013.

[14] R. Lipton. The reachability problem requires exponential space. Research Report 62, Department of
Computer Science, Yale University, New Haven, Connecticut, 1976.

[15] E. Mayr. Persistence of vector replacement systems is decidable. Acta Informatica, 15(3):309–318,
1981.

[16] L. Qian, D. Soloveichik, and E. Winfree. Efficient Turing-universal computation with DNA polymers.
Lecture Notes in Computer Science, 6518:123–140, 2011.

[17] S. W. Shin. Compiling and verifying DNA-based chemical reaction network implementations. Mas-
ter’s thesis, California Institute of Technology, 2011.

[18] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical kinetics. Pro-
ceedings of the National Academy of Sciences, 107:5393–5398, 2010.

21

	1 Introduction
	2 Motivations for a new theory
	3 Theory
	3.1 Overview
	3.2 Basic definitions
	3.3 Pathway decomposition
	3.4 Theorems
	3.4.1 Properties
	3.4.2 Modular composition of CRNs

	4 Algorithm
	4.1 Exploiting bounded width
	4.2 Overview
	4.3 Signature of a pathway
	4.4 Algorithm for enumerating signatures
	4.5 Testing tidiness and regularity

	5 Handling the general case
	6 Conclusions

