






Fig. 4. (A) Experimental scheme for engineering the Displacillator. Vertical dotted lines separate initial contents
of the test tube and timed additions. (B) Experimental data (solid lines) and mechanistic model fits (dashed lines)
show time derivatives of the concentrations of the three Helper strands under three different initial conditions.
Insets display measured Helper concentrations. (C) Phase plot of the experimental data shown in (B). Thick dots
indicate initial conditions. Insets show time traces for each trajectory, as in (B). (D) Phase plot of the concentrations
of the signal strands extrapolated from the mechanistic model. Insets show time traces of the signal concentrations
for each trajectory.
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design, from scratch, another instance of the
Displacillator with completely independent se-
quences. We achieved a dramatic reduction in
the time from initial design to observation of
oscillatory behavior, from 4 years to 4 weeks,
with all autocatalytic modules and the full os-
cillator working on the very first experiment
(Fig. S33, Note S7). Applied to other CRNs of
comparable size, it is reasonable to expect that
Piperine will produce sequences that perform
comparably well for implementing other dy-
namical systems. More generally, it would be
straightforward to augment Piperine to com-
pile CRNs using other translation schemes that
have been proposed (37–39, 44, 55, 56). In-
deed, the core sequence design principles used
here heuristically (e.g. Fig. 3) could form the
starting point for the development of rigorous
sequence design methods, incorporating both
thermodynamic and kinetics constraints, for an
even wider variety of strand displacement cas-
cades.

Conclusions. The development of pro-
grammable molecular technologies will
require systematic architectures and auto-
mated design software. Our demonstration of
a chemical oscillator using just DNA strand
displacement cascades prototypes such a
general technology for chemical dynamical
systems. We expect that our molecular design
principles and experimental methods can be
generalized to implement any desired chem-
ical kinetics, up to scaling of rate constants
and concentrations. It is remarkable that
such a wide range of dynamical behaviors
appears attainable by utilizing no more than
the principles of Watson-Crick base pairing.
The well-understood molecular mechanisms
underlying DNA strand displacement (28–30)
permit detailed mechanistic design of reaction

pathways, which in turn enables quantitative
modeling at the level of individual strand
displacement reactions.

Dynamical systems (including oscillators)
instantiated in biochemistry and programmed
by the choice of DNA sequence have at least
a 20 year history (8, 9, 58, 59). A key dis-
tinguishing feature of our simple DNA archi-
tecture is that it requires no enzymes or other
“black box” components that have not been ra-
tionally designed. As a concrete example, it
is instructive to compare our strand displace-
ment oscillator to other recent synthetic bio-
chemical oscillators (Table 1). The “genelet”
architecture (9, 10, 60) simplifies genetic reg-
ulatory networks (GRNs) by avoiding protein
synthesis and using RNA to directly regulate
transcription from short DNA templates; it re-
lies on two essential enzymes, an RNA poly-
merase and a ribonuclease. The PEN toolbox
architecture (58) goes further by also eliminat-
ing RNA altogether, using just a DNA poly-
merase, an exonuclease, and a nickase. Fi-
nally, cell-free transcription-translation (TX-
TL) architectures (59) are sufficient for im-
plementing many GRNs without the full com-
plexity of living cells; whether derived from
cell extract or reconstituted from purified com-
ponents (61), over 100 essential components
are involved (polymerases, ribosomes, tRNA,
tRNA synthetases, amino acids, NTPs, etc).
In each of these architectures, a wide variety
of circuits can be implemented by introducing
suitably designed DNA molecules. For the ref-
erence oscillators, we employ the number of
designed nucleotides as a simple metric for de-
sign size, and the total number of base-pairs of
DNA that code for enzymes as a proxy for the
extent of black-box genetic information (Ta-
ble 1). By these metrics, the Displacillator has

13

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/138420doi: bioRxiv preprint first posted online May. 16, 2017; 

http://dx.doi.org/10.1101/138420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Oscillator Design size Black-box size Number of Cycles Period
DSD: Displacillator 1386 nt 0 3 (batch) ⇠ 20 h

Genelets: Design I (10) 469 nt ⇠ 4000 bp† 6 (batch) ⇠ 3 h
PEN: Oligolator (11) 71 nt ⇠ 7700 bp‡ 30 (batch) ⇠ 1.7 h

GRNs: Repressillator (5, 57) 6664 bp > 100 components � 9 (microfluidics) ⇠ 3 h

Table 1. Comparison to other recent synthetic cell-free biochemical oscillators. † T7 RNA polymerase, E. coli
Ribonuclease H, and pyrophosphatase; ‡ Bst DNA polymerase, RecJf exonuclease, and Nt.BstNBI nickase.

the greatest fraction of rationally designed ma-
terial, as well as the lowest overall design com-
plexity when black-box components are con-
sidered. However, its relatively poor perfor-
mance highlights the remaining challenges for
fully rationally designed biochemical dynami-
cal systems.

There are currently many proposals, some
partially demonstrated, for implementing
CRNs with DNA (37–39, 44, 55, 56). Each
scheme makes different choices regarding the
representation of signals and the implementa-
tion of desired reactions, resulting in differ-
ent molecule sizes, number of additional me-
diating species, lengths of reaction pathways,
sequence design constraints, and potential for
leak reactions. Currently, it is not clear how
these schemes may be compared in terms of
their potential for engineering arbitrary dy-
namical behaviors in the test tube. Improved
understanding of the biophysics of initial and
gradual leak pathways, and of the sequence-
dependence of kinetics for fundamental DNA
mechanisms such as hybridization, branch mi-
gration, fraying, and dissociation (30, 62, 63),
should allow molecular systems to be designed
with more accurate control over kinetics and
with less leak. Indeed, certain CRN-to-DNA
schemes may have orders-of-magnitude lower
leak (64), raising the prospect that higher con-
centrations and thus faster kinetics could be
achieved reliably. Finally, providing a con-
tinuous “power supply” by replenishing fuel

species and removing waste molecules (as in
a continuous-flow stirred reactor (65)) could
enable faithful dynamics on longer time scales,
such as those required for controlling self-
assembly or chemical reactors.

Enabling the reliable and routine use of
enzyme-free nucleic acid dynamical systems
as embedded chemical controllers will re-
quire integrating nucleic acid subsystems with
a broad range of other chemical processes.
Strand displacement cascades already have
enhanced potential for modular integration
with the ever-expanding range of molecular
structures, machines, and devices developed
in DNA nanotechnology (66, 67). Further-
more, nucleic acids—both DNA and RNA—
are well known for their ability to bind to and
sense small molecules (68, 69), thus provid-
ing direct mechanisms to “read” the chemi-
cal environment. Nucleic acid nanotechnol-
ogy has also been applied to control chemi-
cal synthesis (70–72); to control the arrange-
ment (and rearrangement) of metal nanopar-
ticles, quantum dots, carbon nanotubes, pro-
teins, and other molecules (73–77); and to
control the activity of enzymes and protein
motors (78–80). Much as genetic regulatory
networks and other biochemical feedback net-
works control chemical and molecular func-
tions within biological cells, it is conceiv-
able that nucleic acid dynamical systems could
serve as the information processing and con-
trol networks within complex synthetic or-
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ganelles or artificial cells (81) that sense, com-
pute, and respond to their chemical and molec-
ular environment.
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