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R
eliable digital computation and com-
munication have changed electro-
nics; biology demonstrates similarly

that reliable complex molecular information
transfer and computation could be equally
transformative. Biological organisms reli-
ably self-assemble large-scale objects such
as the ribosome,1 execute long signal-trans-
duction cascades like those in animal
development,2 dynamically control cytos-
keletal organization3,4 and tightly control
metabolism.5 To engineer systems with si-
milar capacities, it is necessary to develop
design principles for chemical systems that
can reliably process and transmit infor-
mation.

In self-assembly, information encoded
within molecules directs assembly. If each
molecule is only used once in a final prod-
uct, as in protein folding or DNA origami,6

self-assembly does not require recurring
information transfer. However, using each
species only once is not practical for the

assembly of micron-scale (or larger) objects
from molecules. Biology generally reuses
components to assemble such complex
objects, as in the self-assembly of networks
of actin,7 microtubules,8 viruses9 or in
biomineralization.10 In these cases, the mol-
ecules encode a pathway of assembly, and
reliable information transfer along the path-
way is necessary to produce a correctly
formed final product. Here we investigate
how information can be reliably transferred
during a designed self-assembly reaction.

Algorithmic self-assembly, a generaliza-
tion of crystal growth, has been proposed as
a general method for information-guided
synthesis of supramolecular objects.11 In
algorithmic self-assembly, a set of molecular
tiles containing four binding sites with par-
ticular affinities executes a “program” for
the assembly of an object. This mechanism
is surprisingly powerful; abstractly, the as-
sembly of such tiles (Wang tiles) into a lattice
can simulate universal computation,12 and in
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ABSTRACT While biology demonstrates that molecules can reliably transfer

information and compute, design principles for implementing complex molecular

computations in vitro are still being developed. In electronic computers, large-scale

computation is made possible by redundancy, which allows errors to be detected

and corrected. Increasing the amount of redundancy can exponentially reduce

errors. Here, we use algorithmic self-assembly, a generalization of crystal growth in

which the self-assembly process executes a program for growing an object, to

examine experimentally whether redundancy can analogously reduce the rate at which errors occur during molecular self-assembly. We designed DNA

double-crossover molecules to algorithmically self-assemble ribbon crystals that repeatedly copy a short bitstring, and we measured the error rate when

each bit is encoded by 1 molecule, or redundantly encoded by 2, 3, or 4 molecules. Under our experimental conditions, each additional level of redundancy

decreases the bitwise error rate by a factor of roughly 3, with the 4-redundant encoding yielding an error rate less than 0.1%. While theory and simulation

predict that larger improvements in error rates are possible, our results already suggest that by using sufficient redundancy it may be possible to

algorithmically self-assemble micrometer-sized objects with programmable, nanometer-scale features.

KEYWORDS: DNA nanotechnology . algorithmic self-assembly . error correction . crystal growth

A
RTIC

LE

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the
article or any adaptations for non-commercial purposes.

http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


SCHULMANET AL. VOL. XXX’ NO. XX ’ 000–000 ’ XXXX

www.acsnano.org

B

principle algorithmic self-assembly can be used to
efficiently assemble arbitrary shapes.13�15

DNA multicrossover molecules16�22 with bind-
ing sites consisting of single-stranded DNA segments
have been used as tiles for algorithmic self-assembly
(Figure 1). Algorithmic self-assembly of DNA tiles has
been demonstrated in one-dimension23,24 as well as in
two-dimensions, where it has been used to produce
complex, aperiodic patterns.25�28 While these demon-
strations indicate that the principles of algorithmic self-
assembly are sound, the measured rate of assembly
errors were generally too high for construction of large,
perfect structures, because for most assembly targets
of interest, even a single assembly error can result in a
malformed final product.25,29 High error rates therefore
limit the applicability of algorithmic self-assembly.

Efforts to decrease errors can focus either on the
physical conditions of assembly (such as temperature,
molecular design, or tile concentrations) and/or on
logical properties of the tile set design, which deter-
mine what kinds of violations of assembly rules pro-
duce errors in the final structure. As an example of the
latter, tile sets that propagate information only in a
single direction (such as copying binary patterns from
layer to layer) tend to have lower error rates, ranging
from 0.01 to 2% per tile.26,27,30 In contrast, for tile sets
that propagate and process information in two dimen-
sions during most assembly steps, error rates have
ranged from 1 to 10% per tile.25,27,28 This difference
raises the question of whether some tile sets are logi-
cally more error-prone, and whether there are general
techniques for designing tile sets that create desired
shapes and patterns with lower error rates.

In electronic circuit design, redundancy can reduce
error rates during computation. Because increasing the
complexity of an electronic circuit by a linear factor can
decrease the error rate exponentially,31 low error rates
do not require a large increase in circuit size even when
every logic gate is error-prone. “Proofreading” has
been postulated as a technique to redundantly transfer
information during algorithmic self-assembly.32 Anal-
ysis and simulations suggest that proofreading should
also exponentially reduce the self-assembly error rate
while increasing the size of the product by just a linear
factor.32,33 Proofreading tile sets require a quadratic
increase in the number of tile types in the general case
of two-dimensional information transfer, but just a
linear increase for one-dimensional information trans-
fer. Here we test these predictions experimentally by
measuring self-assembly error rates during a funda-
mental type of information transfer, sequence copying.
We use four types of DNA tile ribbons34 that copy a
sequence of tile types as they self-assemble with four
levels of redundancy (Figure 2). (In the following, we
refer to a sequence of tile types along the cross-section
of a ribbon as a “molecular sequence” or simply a
“sequence”.) We compare the error rates for each type
of ribbon to determine how redundancy affects as-
sembly error rates.

Error-free algorithmic self-assembly consists of a
series of steps in which a tile binds to a growing crystal
by at least two matching sticky ends. Under slightly
supersaturated conditions, the attachment of a tile by
two sticky ends is energetically favorable, but the
attachment of a tile to a crystal by fewer than two
sticky ends is unfavorable.29,35 In practice, however,

Figure 1. DNA tiles and tile hybridization. (a) The three kinds of DNA tiles (based on DAO-E double-crossover molecules) used
in this work. Each DNA tile consists of 4�6 synthetic DNA strands that self-assemble into the shown structures as dictated by
Watson�Crick complementarity of strand sequences. The upper right DNA tile contains two hairpins (which protrude into
and out of the plane of the diagram) that provide contrast during microscopy. In composite diagrams, the double-stranded
“core” is represented as a rectangle and the single-stranded “sticky ends” are shown as claws. Claws with the same color and
complementary shapes represent sticky ends with complementary sequences. The colored stripe indicates the logic of tile
interactions and information �ow, as described in Figure 2. (b) Tiles bind by hybridization of their sticky ends. Noncom-
plementary sticky ends tend not to hybridize.
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transient unfavorable tile attachments occur often, and
if a second tile attaches to an unfavorably attached tile
before it falls off, the mismatched tile can be “locked
in,” resulting in an assembly mismatch error (Figure 3a).

In a proofreading tile set, each bit of information is
represented by a block of tiles that redundantly en-
code the same input and output information as the

sticky ends of the single tile on the perimeter of the
block. Binding domains on the interior of the block
determine how the tiles within a block fit together and
are unique to that block. Proofreading tile sets prevent
assembly errors by interrupting the lock-in process.
When an incorrect tile attaches, further mismatches
must occur within the tile's block in order for the
incorrect tile to become fixed in place (Figure 3b).
Because sequences of multiple, co-localized errors
are relatively rare, assembly stalls after an error, allow-
ing the incorrect tile to fall off and correct assembly to
proceed.36 The block size determines the number
of mismatches that must occur before lock-in. Each
additional required mismatch should, in theory, expo-
nentially reduce the error rate.33 The proofreading
mechanism can be applied to any algorithmic self-
assembly process: a tile set without proofreading can
be transformed into a proofreading tile set by replac-
ing each tile by a block of tiles. The pattern assembled
by the original tile set is then assembled more robustly
by the corresponding proofreading tile set, except that
the pattern is now larger.

There is already some experimental evidence that
proofreading tile sets work. The first experimental
implementation of a tile set that copied binary bit
sequences from layer to layer26 did not use proof-
reading and exhibited an error rate of at least 2% per
bit copy event. Later implementations of bit-copying
tile sets27,30 used 2-redundant proofreading tile sets
and achieved error rates of 0.26% and 0.02% per bit,
respectively. However, it is difficult to draw firm con-
clusions about the effect of proofreading on assembly
error rates from these studies because each study used
different methods to nucleate crystal growth and
different growth conditions.

Here we experimentally test the prediction that each
layer of additional redundancy in a proofreading tile
set can exponentially reduce the error rate during
algorithmic self-assembly in a controlled setting. We
find that there is a reduction in error rate with increas-
ing redundancy but the amount of this reduction is
smaller than predicted by quantitative simulations.
This difference may be the result of either nonidealities
in our experiments or may suggest a need to further
refine in silicomodels of algorithmic self-assembly.

RESULTS AND DISCUSSION

Experimental Design.To understand how redundant
encoding of a molecular sequence affects the error rate
as it is copied during algorithmic self-assembly, we
chose to use a well-characterized DNA tile-based
structure, the zig-zag ribbon.34 The set of tiles that
make up a zig-zag ribbon crystal are designed to
control both the ribbon's structure and its growth
pathway. Ribbons have a fixed number of tile rows;
growth extends the number of ribbon columns. The
ribbons we consider here have six rows, with the tiles in

Figure 2. Tile sets that copy information with di�erent
levels of redundancy. The 4 tile sets used in experiments
and how they �t together. Yellow and green lines
(representing “0” and “1”, respectively) connect tiles that
copy the same bit. (a) The 1-redundant tile set (shown
assembled into two ribbons) copies a 4-bit sequence with
no redundancy. The arrow shows the preferred zig-zag
growth path on one side of the ribbon. (Growth can also
occur in a corresponding zig-zag path on the other side of
the ribbon.) (b) The 2-redundant tile set copies a 2-bit
sequence with both bits encoded 2-redundantly. (c) The 3-
redundant tile set copies a 2-bit sequence with one bit
encoded 3-redundantly, the other encoded 1-redundantly.
Tiles for a complementary ribbon (“1�0” rather than “0�1”)
are shown in the Supporting Information. (d) The 4-redun-
dant tile setcopies a 1-bit sequence encoded 4-redundantly.
Tiles for a complementary ribbon (“1” rather than “0”) are
not shown. Each tile set can copy all possible binary
sequences of its length. DNA sequences are given in the
Supporting Information.
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the middle four rows encoding a bit sequence that is
copied during assembly. The top left and bottom right
domains of these tiles are unique to their rows; they
encode which row the tile fits into. The top right and
bottom left domains encode either a “0” or “1” bit that
is copied during assembly.

Under slightly supersaturated conditions, i.e., just
below the melting temperature, the thermodynami-
cally favorable growth sites on a crystal are sites where
tiles can attach to a ribbon by at least two binding
domains. Zig-zag ribbons are designed such that there
is exactly one growth site on each end of a crystal. A tile
attachment at a growth site creates a new growth site
at either the row above or below the newly attached
tile. The designed zig-zag ribbon growth pathway zigs
up the ribbon rows, then zags back down. A set of
double tilesfit in the top and bottom rows. These tiles
end a series of tile attachments in one direction (from
bottom to top or top to bottom) and create a new
binding site to initiate a new series of tile attachments
in the opposite direction (Figure 2a). The use of two
alternating tile types in each of the middle rows
enforces the staggered placement of double tiles in
the top and bottom rows, ensuring that zig-zag growth
can continue. Information transfer occurs during rib-
bon growth because tiles must attach to a ribbon both
by a binding site that encodes the correct row informa-
tion anda second binding site that matches the logical

(“0” or “1”) value of the tile in the previous column
(Figures 2 and 3, top).

To measure how the rates of assembly error de-
crease as the amount of redundancy increases, we
designed four distinct zig-zag tile sets that employ
either no redundancy (the 1-redundant tile set) or
increasing amounts of redundancy (the 2-, 3- and
4-redundant tile sets) (Figure 2). Because each of the
zig-zag ribbons has the same width, the redundant
zig-zag tile sets copy sequences containing fewer
distinct bits than the nonredundant tile set.

For any level of redundancy, the highest fidelity of
copying is expected at low supersaturation, where
assembly is reversible and where only attachment of
tiles by two matching bonds is energetically favor-
able.29 While ribbons can grow under these conditions,
they do not nucleate readily. To reduce the barrier to
ribbon nucleation at low supersaturation, we designed
a ribbon “seed” structure, a self-assembled DNA struc-
ture with a facet analogous to a ribbon facet that
is stable above the ribbons' melting temperature
(Figure 4a, see Supporting Information for design).
The sequences of the binding sites on a seed's facet
determine the sequence copied by the ribbon that
grows from it. The seed is designed so that no unfavor-
able tile attachments are required for ribbon growth:
tiles can first assemble a cone of tiles in the center
of the facet via exclusively favorable attachments.

Figure 3. Proofreading uses redundancy to prevent errors during self-assembly. (a) Tile set growth without proofreading.
Tiles can favorably attach to a crystal only if they form two new bonds (top). Tiles that form fewer than two bonds with the
ribbon (mismatched sticky ends do not count as a bond) attach unfavorably and generally fall o� quickly (center). However, if
a second tile attaches before such a tile falls o� (bottom), the �rst tile is locked in, potentially producing an error. (b)
Proofreading tile set growth. Proofreading reduces the error rate by interrupting the lock-in process in (a). When a
mismatched tile joins the crystal (middle), no tile matches more than sticky end at the new growth site. At least one
additional unfavorable attachment must therefore occur before the mismatched tile can be locked in (bottom).
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Double tiles can then bind favorably to the assembly
and initiate zig-zag growth (Figure 4b).

Simulation.We used simulations of tile assembly to
determine how an established biophysical model of
algorithmic self-assembly, the kinetic Tile Assembly
Model (kTAM),29 predicts that the level of redundancy
should affect the error rate. The kTAM uses a single
attachment rate constant, kf, for all tiles, and a � G� of
tile binding parametrized by the � Hse

� and � Sse
� for a

single sticky-end bond. kf was set to 106 /M/s, within a
factor of 3 of the measured rate of oligonucleotide
binding,37 the measured attachment rate of DAO-O
tiles (which are similar to the DAO-E molecules used
here) during nanotube growth,38 and the measured
rate for dimerization of DAE-E tiles.39 The hybridization
rate presumably has some dependence on context
(e.g., sticky-end sequence and orientation of the at-
taching tile) but for simplicity, and because explicit
measurements in a similar DX tile system failed to find a
statistically significant difference,40 we neglect any
such effects here. � Hse

� and � Sse
� were taken to be half

the measured values of � H� and � S� for the attach-
ment of a zig-zag ribbon tile to a ribbon by two sticky
ends.34 We thus assumed ideal cooperativity of tile
binding sites. Further, we ignored any sequence de-
pendence effects and any potential contribution of
mismatched sticky end binding.41 Stochastic kinetics42

were used to simulate each tile binding and unbind-
ing event. Attachment or detachment of blocks of
tiles to or from each other, while possible in solution,
were not modeled. The simulation is not intended to
be quantitatively accurate, but rather is meant to
examine tile assembly semiquantitatively, as the gen-
eral characterization of phenomena relevant to proof-
reading is likely to be robust over a wide range of
parameter values.

The kTAM model is governed by two parameters
that represent physical conditions: the sticky end free
energy, Gse, which measures the interaction strength
between two tiles joined by a single sticky end, and the
monomer concentration free energy, Gmc, which mea-
sures the amount of entropy lost when a tile joins
an assembly. Specifically, the rate of tile detachment

by b sticky ends is rr,b = kf e
b(� Hse

� � T� Sse
� )/RT� � Sinit/R …def

k̂f e
�bGse where kf is the forward rate constant, � Sinit =

�6 cal/M/K is the initiation entropy,43 k̂f = kf e
�� Sinit/R,

T is absolute temperature, and R � 2 cal/M/K is the
universal gas constant. The rate of tile attachment at a
given site on a crystal is rf = kf[t] …def k̂f e�Gmc, where [t] is
the free tile concentration and Gmc = �ln[t] � � Sinit/R.
Thus, the dimensionless free energy for tile attach-
ment by b binding domains is given by � G= ln(rr,b/rf) =
Gmc �bGse.

When 2Gse > Gmc > Gse, tiles attach favorably only
when they match at least two sticky ends on a growing
ribbon. For a given Gmc, assembly occurs most accu-
rately just below the melting temperature, when Gmc �
2Gse. For a fixed concentration, assembly becomes less
accurate as Gse (and thus supersaturation) increases.
The ratio � …def

(Gmc/Gse) is conventionally used as a mea-
sure of supersaturation for algorithmic self-assembly
reactions.29,32,33

This model is simple enough that it is possible to
analytically estimate the assembly error rate for a given
Gmc and Gse. In a 1-redundant tile set, a single mis-
matched tile can be locked in by the next tile, which
can attach by two matching binding domains. The
probability that a mismatched tile is locked in before it
can fall off (as in Figure 3a) can be approximated as

rf

rf þ rr,1
…

e�Gmc

e�Gmc þ e�Gse
(1)

To obtain the rate at which mismatched tiles are locked
in, we must multiply this probability by the rate at
which mismatched tiles attach. That rate is the number
of tile types that can bind by a single bond at this
location (here, just 1) times the rate at which each such
tile attaches (here, kf [t]). The bitwise error rate for
copying is then approximated as the ratio of this
mismatch lock-in rate to the rate of correct growth
(here, also kf [t]), yielding again the term in eq 1. In this
simple analysis, we ignore the probability that the tile
that attached by two binding domains will subse-
quently fall off.

With a tile set that has n > 1 levels of redundancy, an
incorrect attachment must be followed by another

Figure 4. Nucleation of a ribbon from a crystal seed. (a) A composite illustration of a crystal seed. In this example, the binding
sites propagate the illustrated green-yellow-green-yellow sequence; these binding sites can be modi�ed by design to change
the seeded sequence. (b) Initial error-free growth o� the seed produces a V-shaped assembly of tiles. While assembly order is
nondeterministic, all possible assembly orders that do not involve unfavorable assembly steps correctly copy the sequence.
After enough layers of tiles have accumulated, a double tile can attach by two binding domains to the bottom edge. The
attachment of a second adjacent double tile allows zig-zag growth (black arrow; also cf. Figure 2a) to commence.
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incorrect attachment which also tends to fall off

(Figure 3b). For such a tile set, the probability that an
initial mismatched attachment will be locked in now
depends on a sequence of n unfavorable single-bond
attachments occurring before a favorable two-bond
attachment can finally lock in the first error. Since the
rate of attachment rf is not dependent on the number
of bonds formed, this probability is, roughly,

e�Gmc

e�Gmc þ e�Gse

 ! n

(2)

This expression is approximate, as it neglects the
probability that tiles will fall off and reattach during
the lock-in process, or that, as above, the tile that
attaches by two matching binding domains will fall
off. But when � is just below 2, eq 2 implies that each
layer of redundancy is expected to reduce the error
rate by the multiplicative factor

e� � Gse

e� � Gse þ e�Gse
� eGse (3)

We simulated the error rate during seeded ribbon
growth for Gmc = 13, which corresponds to a tile
concentration of about 46 � M. While this concentra-
tion is much higher than the tile concentrations used in
our experiments, we found that at lower simulated tile
concentrations, accurately measuring the simulated
error rates was computationally intractable. For near-
optimal values of � , the simulations predict a decrease
in error rate by a multiplicative factor with each addi-
tional layer of redundancy, and for lower values of �
(i.e., higher levels of supersaturation), the error rate
increases markedly, which is qualitatively, though not
quantitatively, consistent with eq 2 (see Figure 5a). For
the actual experimental conditions, where tile concen-
trations are lower, simulations would predict even
smaller error rates, and commensurate decreases in
error rate with redundancy; but we would expect the
qualitative trends to be the same.

Because the error rate depends strongly on the
level of supersaturation, we anticipate a significant
difference in error rates within crystals nucleated by a
seed (which should grow at low supersaturation) and
those that spontaneously nucleate (presumably at
higher levels of supersaturation). We thus used a
second set of simulations to estimate the degree of
supersaturation at the point during the anneal where
growth from seeds or spontaneous nucleation of new
crystals would commence. In these simulations, it was
computationally tractable to use a value of Gmc set so
that [t] = 50 nM, the same tile concentration used in
experiments. In these simulations, the temperature
was reduced at the same rate as in our experiments,
because the degree of supersaturation experienced by
growing crystals depends on the relative rates of
nucleation, growth, and the annealing speed. For each

temperature, the value of Gse was set using � Hse
� and

� Sse
� . A crystal was considered nucleated when it

consisted of at least 80 tiles. These simulations predict
(Figure 5b) that seeded crystals grow and quickly
exceed the target size as soon as growth of any kind
is favorable (and even slightly before, due to fluc-
tuations). In contrast, spontaneously nucleated crystals
do not form until the solution becomes fairly super-
saturated and predicted error rates are much higher.

Tile Design.The zig-zag ribbons were assembled
from DAO-E double crossover molecules (Figure 1a)
with 5 base-pair sticky ends. The binding domains
encoded by the sticky ends for the four tile sets are
shown in Figure 2. The sequences of the double-
stranded regions of the tiles were designed as reported

Figure 5. Simulated assembly error rates and nucleation
temperatures. (a) Simulated error rates during constant
temperature ribbon assembly from a seed, as a function
of � , a measure of supersaturation. (See text; � = 2 is the
melting temperature of the ribbons.) Error rate measure-
ments were made over the growth of a 500 column ribbon.
To maintain a constant level of supersaturation, the free tile
concentration was held constant at 46 � M over the course
of the simulation. Error bars indicate 2 standard deviations.
(b) Histogram of � values at which crystals reach 80 tiles
during kinetic simulations of annealing ribbon tiles. In the
simulations, a reaction volume containing 1 seed, sized such
that the seed concentration was 2 nM with 50 nM of each tile
was annealed from 40 to 20 �C with the temperature
decreasing 1 �C/h, the same protocol used in experiments.
Free tile concentration was held constant over the course
of the simulation. Each histogram comprises at least 100
simulations.
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previously34 using sequence symmetry minimiza-
tion44,45 to prevent spurious interactions. By design,
matching sticky ends have similar hybridization ener-
gies but all sticky ends encoding “0” and “1” in the same
row have a cross-hybridization � G� of 0 (or weaker)
according to the nearest neighbor model of DNA
hybridization.46 To differentiate “0” from “1” tiles dur-
ing atomic force microscopy (AFM) imaging, two hair-
pins were added to the middle of one of the helices of
the “1” tiles perpendicular to the plane of the lattice,
which increased the height of the “1” tiles.17

The crystal seed structure is a DAO-E DNA crystal
lattice17 woven such that no strand can detach from
the structure without breaking at least 16 base pairs
(see Supporting Information for design). The melting
temperature of a similar seed structure at the seed
concentration used during growth (2 nM), has been
measured to be 62 �C, well above the melting tem-
perature of the ribbons (about 34 �C at 50 nM).34 To
template the growth of a particular sequence, the
binding domains along the edge of the seed were
set to match those of the desired ribbon facet. Previous
experimental work suggests that seeds lower, but do
not eliminate, the nucleation barrier to the desired
sequence.34

Tile and Seed Assembly.To test that the tiles formed
properly, we assembled individual tiles by annealing
their component strands from 90 to 20 �C at 1 �C/min.
(Buffer solution and electrophoresis and AFM protocols
are as described in ref.34 and in the Methods section.)
Polyacrylamide gel electrophoresis showed that each
tile assembled into a single product with at least 80%
yield. We think that this is an underestimate of the
yield, but in any case, algorithmic crystal growth can be
quite robust to impurities of malformed tiles.47 AFM
images of crystal seeds annealed at the same rate show
that seeds form as designed, although the synthesis
yield (the fraction of DNA material that was incorpo-
rated into well-formed seeds) was estimated to be less

than roughly 8% (Figure 6a). This synthesis yield is
lower than that of other potential seed structures such
as DNA origami,27,48 and suggests that a variety of
partial seed structures could lower the barrier to
nucleation for a wider variety of sequences during
the annealing process. However, for our purposes
the exact concentration of seeds (as measured by the
synthesis yield) is not critical; our control over the
sequence being nucleated depends rather on the
fraction of well-formed seeds out of all DNA structures
likely to stimulate ribbon nucleation, which would in-
clude only the large partial seed structures. This frac-
tion, which we call the synthesis quality, was estimated
to be roughly 40% and deemed to be adequate. (See
Supporting Information Figure S1 for details.)

To test that 6-tile-wide ribbons formed and could
propagate arbitrary sequences, we first annealed
50 nM of each 1-redundant tile strand from 90 to
40 �C at 1 �C/min and from 40 to 20 �C at 1 �C/h in
the absence of seeds. Under these conditions, tiles are
expected to form during the first part of the anneal and
ribbon growth becomes favorable slightly below
40 �C.34,49 As the temperature decreases, spontaneous
nucleation of ribbons containing arbitrary sequences
becomes more likely. AFM imaging revealed that each
ribbon copied a pattern with occasional errors
(Figure 6b), and that each of the 10 distinguishable
patterns formed. (The orientation of asymmetric pat-
terns such as 1000 can not be determined.) In analo-
gous tests of the 2-, 3- and 4-redundant tile sets, all
2-, 3- and 4-redundant patterns were also observed,
indicating that all tiles correctly performed their logical
function.

Ideally, assemblies with all possible patterns would
nucleate and grow at the same rate. However, in
previous experiments, segregation of “0” and “1” tiles
into mostly “0” and mostly “1” regions has been
observed,50 possibly caused by a slight difference
in the melting temperature of “0” and “1” tile lattices.

Figure 6. AFM images of seeds and ribbons. All scale bars are 100 nm. The brown illustration shows the expected seed
structure. Yellow arrows indicate locations of assembly errors. (a) Crystal seeds. Seeds formed with less than 8% synthesis
yield, but with a synthesis quality of roughly 40%. (See text and Supporting Information Figure S1 for details.) (b) The
1-redundant ribbons grown without seeds. The image contains both fully formed ribbons and smaller fragments in the
background. The “1” tiles appear brighter because they protrude higher o� the surface due to attached hairpin structures.
(c) A seed-nucleated 3-redundant ribbon. Blue and red dots label the “1” and “0” elements of a sequence, respectively.
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This difference may be due to the hairpins on the “1”

tiles, which may alter the lattice structure by introduc-
ing twist or distortion that could weaken binding
rates.25,27,49

When the two tile types are annealed together, this
difference could cause ribbons with all “0” tiles to form
first, producing an excess of these ribbons, and pre-
venting the “0” tiles from being used to form ribbons
encoding other patterns. The over-representation of
ribbons with mostly 0s would also cause “0” tiles to be
used up faster than “1” tiles during growth. The result-
ing imbalance in concentrations of “0” and “1” tiles
means that the ON rates for these two tile types would
be different and that as a result, the mismatch error
rates for different sequences would be different. The
degree of these differences would also change over
the course of the reaction as the two tile types are
depleted. Thus, segregation of tile types into ribbons of
mostly “0” or “1” tiles makes it hard to quantitatively
measure how redundancy, rather the sequence being
copied or when during the reaction the copying
process takes place, affects error rates.

To measure sequence-dependent nucleation of
unseeded ribbons, we counted the number of times
each 1-redundant pattern was observed in 25 nono-
verlapping 1 � m square images taken at random
locations on the surface. Consistent with our expecta-
tions, ribbons containing all or almost all 0s or 1s were
more common than expected by random chance,
while those with a mixture of 0s or 1s were compara-
tively rare (Figure 8, green bars).

If most crystals grow from seeds that nucleate 0101
and 1010 patterns, and if 0101 and 1010 ribbons grow

at the same rate, then “0” and “1” tiles would be
expected to be depleted at the same rate, so that
concentrations of the two tile types would remain
balanced. We therefore repeated the growth of
1-redundant ribbons using seeds for the 0101 and
1010 patterns with the goal of achieving this balance.
We added 2 nM each of preformed crystal seeds for the
0101 and 1010 patterns when the anneal reached
50 �C, which is above the melting temperature of
ribbons but below the melting temperature of the
seeds. (See Figure 6c for an AFM image of a seeded
3-redundant ribbon.) More than 20% of the resulting
ribbons displayed the seeded pattern, 10 times more
than without seeds, but the 0000 pattern still occurred
most frequently (Figure 8, brown bars). From this we

Figure 8. Proportions of observed 1-redundant patterns.
Data are based on 25 seeded and 25 unseeded images.
Each set of images contained, in total, approximately 100
ribbons.

Figure 7. Ribbons copying sequences. All scale bars are 100 nm; yellow arrows point out locations where sequences are
incorrectly copied. Blue and red dots label the “1” and “0” elements of the sequence, respectively. (a�d) 1-, 2-, 3-, and
4-redundant ribbons, grown from seeds as described in the text.
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conclude that ribbons nucleated and grew at a variety
of temperatures during the anneal, the seeded pattern
largely at lower supersaturation and the unseed pat-
terns largely at higher supersaturations, making it
difficult to precisely compare our simulation results
with our experiments. However, the use of 0101 and
1010 seeds did reduce the problem of uneven deple-
tion of “0” and “1” tiles and made it possible to study
the propagation of a wider variety of sequences.

Error Rates.To determine the rate at which assembly
errors occurred in the 1-redundant tile set, we counted
the number of bits that were correctly and incorrectly
copied by ribbons annealed with seeds (Methods,
Figure 9, bar 1). Crystals with the seeded pattern should
nucleate first, and therefore should grow under less
supersaturated conditions, where the error rate is lower,
than other crystals. Given the average level of super-
saturation when a ribbon starts to grow that we
observed in our simulations, we would expect that
the error rate for seeded crystals would be approxi-
mately 10-fold lower than the rate for unseeded
crystals. In our experiments, the error rate difference
between unseeded crystals and mostly seeded crystals
was approximately 4.5, consistent with this prediction
(Figure 9, points 5�6).

We characterized the copying error rates of the
2-, 3-, and 4-redundant tile sets using the same protocol.
The crystal seeds nucleated the patterns 01 and 10 for
the 2- and 3- redundant tile sets, and the patterns 0 and
1 for the 4-redundant tile set (Figure 7b�d). With each

increase in the level of redundancy, the error rate
decreased by a factor of about 3, with the error rate
for the 4-redundant tile set being less than 0.1% per bit
copied (Figure 9, bars 1�4). These results qualitatively
match our predictions, although the observed de-
crease in error rates with each additional degree of
redundancy was much smaller than the 100-fold drop
in error rates predicted by our simulations. This differ-
ence is even more striking given that these simulations
overestimated the expected error rates, since they
considered growth at a higher tile concentration than
the concentration used in experiments. We also ob-
served, surprisingly, that the error rate in the fourth row
of the 3-redundant ribbons (which was encoded
1-redundantly) was about three times higher than
the error rate in copying the bits in the 1-redundant
tile set.

DISCUSSION

In our experiments, the observed error rates while
copying information in zig-zag ribbon crystals qualita-
tively agreed with the predictions of our approximate
theoretical analysis and our simulations: with each
level of redundancy, we see an approximately multi-
plicative reduction in the error rate. The biggest reduc-
tion in error rates came with introducing the first level
of redundancy, also in qualitative agreement with the
simulations.

Together, these results suggest that redundancy can
play an important role in ensuring that self-assembly
proceeds with few defects, and that it is possible to use
kinetic models to design energy landscapes for self-
assembly pathways that systematically reduce errors.
The approach considered here, i.e., using redundancy,
cooperativity, and proofreading to improve the accu-
racy of a self-assembly process, contrasts with the
approach of using strand displacement to make each
step of self-assembly robust.51,52 While the strand
displacement approach is simple and results in low
error rates, it places limits on the kinds of structures
that can be assembled and so far has proved difficult
to scale.

A remaining discrepancy in our work is that simula-
tions and theory predict a much lower absolute error
rate than was observed experimentally. Similar discre-
pancies between simulations and experimental results
have been described in previous algorithmic self-as-
sembly studies.25,34,49 Possible reasons for these dis-
crepancies include differences in interaction energies
between tiles with different sticky end sequences or
with and without hairpins, limited cooperativity in the
binding of tiles to multiple sticky ends simultaneously,
malformed tiles, poor nucleation and nonideal assem-
bly temperatures, or differences between tile concen-
trations and other tile depletion effects. More detailed
simulations have shown that some of these effects can
strongly affect the predicted error rate,41,47,53 but

Figure 9. Per-bit error rates during ribbon growth. 1R =
1-redundant, 2R = 2-redundant, 3R = 3-redundant, 4R =
4-redundant. The graphs include all crystals grown with
seeds, although since not all crystals grew from seeds, these
quantities include both seeded and unseeded growth. The
last three bars show error rates of 1-redundant growth
under di�erent conditions. “1R ns” is the error rate within
1-redundant crystals grown without seeds. “1R s” is the
error rate of 1-redundant crystals grown with seeds that are
seeded with very high probability because they begin with
the seeded sequence, 0101 or 1010, that otherwise rarely
nucleates. “1R w/3R” is the measured error rate for the
fourth row of the 3-redundant ribbons, which copied 1 bit
nonredundantly. For each level of redundancy, the number
of errors are tabulated using 25 AFM images of ribbons 1 � m
on each side, about 5000�10 000 ribbon rows.
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systematic experiments to identify which effects are
most important in practice have not been performed.

The higher-than-predicted error rates in the experi-
ments reported here can be partially attributed to the
imperfect performance of the seeds and the presumed
consequence that assembly occurred at a relatively
high level of supersaturation. It is therefore possible
that we might observe much lower error rates using
larger, more sturdy DNA origami seeds27,28,30,48 that
appear to nucleate assemblies closer to the melting
temperature. Another factor that may have affected our
results is ribbon joining, which has been observed
at high enough rates that some ribbons we observed
can be presumed to have been formed by end-to-end
joining reactions.30,34,54 Joining of ribbons could pro-
duce structures with mismatches that we would have
counted as errors during AFM image analysis. We
therefore expect that our measured error rates may
overestimate the true rate of errors during growth
by monomer addition. Reliable nucleation of ribbons
from a seed would also reduce end-to-end joining
and therefore allow a more accurate measurement of
ribbon growth rates.

Despite the limitations to our experiments and
modeling, the continued reduction in error rates with

increasing redundancy also suggests that it should be
possible, without any improvement in experimental
technique, to assemble ribbons with virtually no errors
simply by using enough redundancy and by using
similar techniques that prevent spurious DNA tile
nucleation34,55 and facet growth.33,49 While large
amounts of redundancy increase the feature size
of the product, it may be possible to mitigate this in-
crease by using either tile sets which introduce redun-
dancy without increasing size,56,57 or by using smaller
tiles.52,58

Consider, for example, the 16-tile wide “Sierpinski
ribbon” of Fujibayashi et al.,28 which used a 1-redundant
tile set and obtained a 1.4% error rate, comparable to
the1-redundant tile set in this work. The Sierpinski pattern
can alternatively be produced using a 4-redundant tile
set without increasing the pattern scale.57,59 If a similar
reduction in error rates similar were to be observed,
each 4 � 4 proofreading block would have a 0.14%
chance of error, implying that the expected ribbon
length prior to the first error would be more than
700 tiles or roughly 9 � m. While this prediction remains
to be tested experimentally, it illustrates the potential
for the self-assembly of complex micrometer-scale
molecular structures.

METHODS
Crystal Growth.For each experiment, strands were mixed at

50 nM per strand in TAE buffer with added Mg2þ (40 mM Tris-
acetate, 1 mM EDTA, 12.5 mM magnesium acetate). Samples
grown without seeds were annealed from 90 to 40 �C at 0.1 �C/6 s,
during which time it was expected that tiles assembled from
individual strands, and then from 40 to 20 �C at 0.1 �C/6 min,
during which time crystals putatively nucleated and grew. For
samples containing a crystal seed, the seed strands were first
annealed separately at 50 nM per strand from 90 to 20 �C at
0.1 �C/6 s. Tile samples (without seeds) were then annealed
from 90 to 50 �C, and held at 50 �C for 1 h, during which time the
previously annealed seeds were added to a final concentration
of 2 nM. After holding at 50 �C for 1 h, the samples were cooled
to 40 �C at 0.1 �C/6 s and then from 40 to 20 �C at 0.1 �C/6 min.
Samples were imaged by AFM soon after an anneal was
completed.

Sample Imaging.AFM imaging was performed using a Digital
Instruments Multimode AFM (with a Nanoscope IIIa controller)
in tapping mode under the TAE/Mg2þ buffer described above.
After annealing, 2 � L of each sample was deposited on a freshly
cleaved mica sheet with an added 40 � L layer of TAE/Mg2þ

buffer. To avoid sampling bias, images taken for statistical
measurement of error rate were taken at random locations in
a self-avoiding random walk along the surface.

Yield Determination for Crystal Seeds.Synthesis yield is here
defined as the fraction of DNA material that is incorporated
into well-formed seeds. We estimated the synthesis yield from
the AFM image of Supporting Information Figure S1 as follows.
The total DNA material was measured in pixels occupied by
applying a height threshold to the image. The material incor-
porated into well-formed seeds was measured, similarly in
pixels, by identifying structures that were five tiles high. The
ratio, which was roughly 8%, is an estimated upper bound on
the synthesis yield. We expect that it is a loose upper bound,
because in our experience smaller DNA structures do not
adhere to the mica as well as larger DNA structures, resulting
in a bias for larger structures. It is difficult to assess the extent of

the bias because it appears to vary with mica samples and is
sensitive to the Naþ, Mg2þ, and Ni2þ salt concentrations.

Synthesis quality is here defined as the fraction of well-
formed seeds among all full-sized (5 tiles in height) and reason-
ably large partially assembled (3 or 4 tiles in height) structures.
Identification of said structures is also shown in Supporting
Information Figure S1, where the synthesis quality is estimated
to be roughly 40%. We believe this estimate to be fairly robust to
the mica stickiness bias as well as to alternative interpretations
of the image.

Error Rate Determination for Ribbon Growth.Approximately
50�75 images for each level of redundancy were used to
determine error rates in assembly. In each image, the total
number of mismatch errors, along with the total length of
observed ribbons were tabulated. An error during assembly
copying was defined as a change in a single bit from 0 to 1 or
vice versasuch that each value is copied for at least 3 columns;
since changes to a redundantly encoded bit might involve
several individual defects spread over several columns, and
because imaging artifacts appear locally without changing the
propagated pattern, structures unique to an individual column
were not counted. Simultaneous changes in multiple bits, as in
Figure 7, were counted as multiple errors.

The total number of rows copied was estimated from the
total length using previously measured tile sizes of approxi-
mately 13 by 6 nm.17,34 The error rate was calculated by dividing
the total number of errors by the total number of bits copied.
The confidence interval is given by 2 standard deviations of this
measurement. Ribbon fragments that were not full width or
other artifacts were not included in error rate determination,
but were often seen in AFM images.

Simulations.Simulations used xgrow , which simulates tile
assembly using the kTAM model29 and used the parameters
described in the main text.

For simulations that measured error rates, growth of ribbons
began from a structure with the same arrangement of sticky
ends as the seed structure. Each simulation proceeded for 2000
simulated seconds. The maximum size the structure could grow
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to was determined by the simulated lattice size, approximately
256 rows. For � , 2, assemblies reached this maximum in the
allotted time, but samples with � � 2, assemblies did not. Error
rates were calculated by dividing the number of bits copied
after the initial nucleation stage (see Figure 4b, main paper) by
the number of mismatch errors seen. To avoid counting tiles
that may have been added transiently in error but were not
locked in, the last 4, 8, 12, and 16 tiles added for 1-, 2- 3- and
4-redundant tile sets, respectively, were removed before tabu-
lating the error rate. The confidence intervals for error rate
measurements were two times the standard deviation, given
by � = (� )1/2/(m1/2), where m is the total number of bits copied
and � is the measured error rate.

To determine the average temperature at nucleation of
both seeded and unseeded structures, simulations followed the
same linear annealing schedule used for experiments, a 1 �C
drop each hour. The strength of a single sticky-end bond, Gse, at
each simulated temperature was determined using the formula
Gse = �(� Hse

� � T� Sse
� )/RT, where � Hse

� = �51.2 kcal/mol
and � Sse

� = �150 cal/M/K are exactly half the previously
measured energies for attachment to a ribbon by two sticky
end bonds.34 Each sample used Gmc = 19.8 which corresponds
roughly to a tile concentration of 50 nM and boundary tile
concentration of 100 nM. Simulations that measured average
nucleation temperatures from a seeded structure used the
same seeded structure as the simulations that measured
error rate. To fairly compare the nucleation time of seeded
with unseeded samples, all single tile attachment and detach-
ment reactions occurred within a volume of solution that
would be occupied by 1 seed (about 83 femtoliters) were
tracked, while keeping free tile concentrations constant.
Nucleation in both cases was defined as when an assembly
reached 80 tiles.

The xgrow program and simulation scripts used in this
study are available from the authors by request.
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