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Dicen que no soy poeta,
tiene razón quien lo diga.

A veces escribo versos
cuando la tristeza obliga,

para bendecir a Dios
o elogiar a una hormiga.

Tan sólo digo que escribo,
jamás diré que compongo,

pues los francotiradores
dirán que los descompongo.
Mis versos son una caricia,

a veces es un rezongo.

Cuando un versillo concibo
lo confío a un papel,

luego veo que lo levanta
algún remolino cruel,

otros coleccionan polvo
en un antiguo anaquel.

Así voy por las veredas
pepenando consonantes,

a mis versos no llegó

la retórica brillante;
si algo brilla en mis palabras
es un vidrio, no un diamante.

Igual que Ponce de León
que buscaba aquella fuente

de la eterna juventud
y falleció por impotente,
busco yo la inspiración

y cada día estoy más ausente.

Seguiré escribiendo versos
no porque me crea poeta,

sólo para denunciar
profunda inquietud secreta
que en mi viaje por la vida
se introdujo en mi maleta.

Mi raído gabán lleva consigo
el polvo de todos los caminos.

En mi peregrinar abro un paréntesis:
no dejé rastro, examino,

mis huellas y mis remendados versos
se los llevaron los impíos remolinos.

Pascual Ortiz Saucedo,
“No Soy Poeta” Antología
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Figure 0.1: Flowers are theorems. My vision of mathematical biology consists of blurring the
distinction between mathematics and biology. Mathematical theorems emerge from alphabets,
syntax, and deduction. Biological structures emerge from biomolecules, chemistry, and catalysis.
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ABSTRACT

Stochastic chemical reaction networks (SCRNs) are a mathematical model which serves as a �rst

approximation to ensembles of interacting molecules. SCRNs approximate such mixtures as always

being well-mixed and consisting of a �nite number of molecules, and describe their probabilistic

evolution according to the law of mass-action. In this thesis, we attempt to develop a mathematical

formalism based on formal power series for de�ning and analyzing SCRNs that was inspired by two

di�erent questions. The �rst question relates to the equilibrium states of systems of polymerization.

Formal power series methods in this case allow us to tame the combinatorial complexity of polymer

con�gurations as well as the in�nite state space of possible mixture states. Chapter 1 presents an

application of these methods to a model of polymerizing sca�olds. The second question relates to

the expressive power of SCRNs as generators of stochasticity. In Chapter 2, we show that SCRNs

are universal approximators of discrete distributions, even when only allowing for systems with

detailed-balance. We further show that SCRNs can exactly simulate Boltzmann machines. In

Chapter 3, we develop a formalism for de�ning the semantics of SCRNs in terms of formal power

series which grew as a result of work included in the previous chapters. We use that formulation to

derive expressions for the dynamics and stationary states of SCRNs. Finally, we focus on systems

that satisfy complex balance and conservation of mass and derive a general expressions for their

factorial moments using generating function methods.
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1

OVERVIEW

Whereas mathematical physics has succeeded in making impressive predictions about the phe-

nomena it is meant to model, biology has not yet seen mathematical models with such degree

of predictive power, let alone the uni�cation that theories of physics have achieved. The lack of

predictiveand unifying models in biology in comparison with physics re�ects the bewildering

di�erence in the complexity of the phenomena they are concerned with.

Still, the study of molecular interaction networks has helped theorists gain some perspective on

and understanding of the inner workings of living cells. The mathematical machinery used in the

analysis of such networks is that ofchemical reaction networks(CRNs) (Feinberg, 1972; Horn,

1972; Horn and Jackson, 1972). A key feature of CRNs is their high level of abstraction in which

molecules are devoid of internal structure and represented by real-valued variables reporting their

concentration. The quali�erchemicalis therefore slightly inappropriate since a CRN does not

capture the combinatorial and generative aspects that are characteristic of actual chemistry. Rather,

in a CRN, the set of molecular types is merely a list of proper names and all reactions must be

speci�ed at the outset; they are explicitly stated in the model as opposed to being implicit by virtue

of chemical reactivity linked to structure. A CRN is chemical only in that its kinetics are based on

the law of mass action. CRNs are therefore inherentlyphenomenologicalmodels (Gunawardena,

2014). In other words, they constitute falsi�able hypotheses about mechanisms and reactivities of

a mixture. The predictive power of CRNs is limited by the extent to which their assumptions are

correct about the systems they are meant to describe.

An important consideration in modeling biomolecular systems is their inherentstochasticityas

a result of small molecular counts. This requires a stochastic generalization of the traditional

ordinary di�erential equation semantics for CRNs. Such models are known asstochastic chemical

reaction networks(SCRNs) (Anderson and Kurtz, 2015; D. Gillespie, 1976; D. T. Gillespie, 1977;

Van Kampen, 1992). SCRNs aremore fundamental than deterministic CRNs in the sense that

the latter can be derived from the former as the right limit of large volumes (Kurtz, 1972). Yet,

SCRNs remain agnostic to the combinatorial nature of biochemical structures. A description of

reaction mixtures that can address both stochasticity and combinatorics would be more faithful to

the reality of molecular biology and hence more predictive. Already a number of abstract models of

reaction networks exist that incorporate both stochastic and combinatorial aspects (Benkö, Flamm,

and Stadler, 2003; Blinov et al., 2004; Danos et al., 2007; Johnson and Winfree, 2020; Phillips and

Cardelli, 2009). In order to understand what these systems are capable of and how they relate to

one another, we will need a general theory of stochastic/combinatorial reaction networks that can

accommodate the various existing models.
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In this thesis, I develop a formal approach to CRNs that serves as a precursor to a general,

combinatorial theory of reaction networks. I conceived these ideas in the context of applications that

incorporate stochastic and combinatorial aspects (Cappelletti et al., 2020; Ortiz-Muñoz, Medina-

Abarca, and Fontana, 2020; Poole et al., 2017). The approach is based onformal power series,

which are often used for counting general classes of combinatorial objects such as trees, graphs,

strings, etc. (Flajolet and Sedgewick, 2009; Wilf, 1994). I believe that the versatility of formal

power series can be harnessed to incorporate general graphical models of reaction networks. We

will now proceed to overview the structure of the thesis.

Chapter 1 consists of a publication that arose from explorations in the context of abstract models of

polymerization aimed at elucidating the role polymerizing sca�olds might play in cellular signaling

(Ortiz-Muñoz, Medina-Abarca, and Fontana, 2020). A system capable of polymerization can in

principle generate an unlimited number of di�erent molecule types, rendering a traditional CRN

model infeasible. Although it would be possible to write equations describing the polymerization

dynamics, the in�nitely many distinct types of possible molecules would require more careful

considerations of limits that standard CRN theory is not equipped to handle. In the paper, we

restrict our attention to stationary states so that we can circumvent some of the di�culty inherent

in computing dynamic solutions. My contribution to this paper was in the development of the

mathematical formalism for computing equilibrium concentrations when the model is conceived

deterministically (i.e. with continuous concentrations and hence no limit as to the maximal polymer

length), as well as probabilities and expectation values when conceived stochastically (i.e. with

discrete particle numbers and hence a limit on the maximal size of polymers). The bulk of

complexity of the problem lies in considering mass conservation constraints. Methods based on

generating functions are capable of handling the combinatorial complexity of polymers as well as

their stochastic equilibria. I further develop these techniques in Chapter 3.

In addition to using CRNs as a means for understanding chemical or biological phenomena, another

conception of CRNs is as models of computation (Chen, Doty, and Soloveichik, 2014a,b; Cook

et al., 2009; Cummings, Doty, and Soloveichik, 2014; Soloveichik et al., 2008). In this case,

the assumptions of the CRN model are taken to beideal and real systems as approximations of

the resulting ideal behavior. From this perspective if a computation can be embedded into the

ideal mathematical behavior of a CRN, then an engineered chemical system that approximates its

assumptions will also approximate that computation. Hence, in this context, CRNs are not so

much meant to be predictive than prescriptive. Of particular interest is the ability of stochastic

CRNs to perform probabilistic inference as this would enable engineered chemical systems to act

�intelligently� in some loose sense. Since probabilistic inference depends on the ability to represent

distributions, an important matter is the scope of distributions that can be observed in SCRNs.
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Chapter 2 reports my perspective and contributions to two publications aimed at exploring the

probabilistic expressive power of SCRNs (Cappelletti et al., 2020; Poole et al., 2017). In Cappelletti

et al., 2020, we show that in fact SCRNs are capable of approximating any desired discrete

distribution. This remains true even in the case when the CRNs are required to satisfydetailed

balance. A hypothetical combinatorial reaction network model would be at least as expressive as

CRNs so that it su�ces to show the universality of CRNs in order to establish that of more general

combinatorial models. In Poole et al., 2017, we show that SCRNs are also capable of faithfully

reproducing the equilibria of Boltzmann Machines (BM). Although the model used there is that of

CRNs, the existence of an underlying graphical structure in the BM invites a combinatorial model.

My contribution to this paper was in the form of a CRN model that exploits this combinatorial

aspect to simulate BMs exactly while preserving detailed balance.

In Chapter 3, I develop a formalism based on formal power series to de�ne the stochastic semantics

of CRNs following the proposal in Baez and Biamonte, 2018. Most of the material in this chapter

was conceived as applications to the projects I was a part of as a graduate student. Of central

importance to my motivation was the fact that the combinatorics and stochasticity of reaction

networks can be readily handled by formal power series methods. The �rst part of the chapter

focuses on formal expressions for representing the dynamics of SCRNs. The second half focuses

on stationary solutions to complex-balanced SCRNs. I develop a generalization of the formalism

presented in Chapter 1 with the purpose of computing equilibrium factorial moments of general

assembly systems.

Each chapter in the thesis is preceded by a preface in which I present my personal perspective of

the chapter as well as the way in which some of the ideas were conceived. This is in addition to the

technical introduction that places the work in its scholarly context.

I believe that in order to move in the direction of a more uni�ed theory of mathematical biology

we may need to rehash the current foundations of mathematics to bring them closer to the objects

of biology. Just as metabolic pathways, such as the citric acid cycle, are conserved across species,

there are mathematical themes that are pervasive throughout mathematics. Category theory (CT)

is a mathematical discipline and a foundation of mathematics aimed at the study of such universal

themes and analogies between mathematical disciplines (Mac Lane, 2013; Spivak, 2014). Naturally

CT has been recognized for its ability to unify concepts and theories. One example of this kind of

uni�cation is Lawvere's �xed-point theorem, which has as special cases all the classical paradoxes

of self reference such as Cantor's theorem, Russell's paradox, Turing's halting problem, and Gödel's

incompleteness theorem (Lawvere, 1969; Yanofsky, 2003). The theory ofspeciesuses CT methods

to clarify the streamlining role that formal power series play in combinatorics (Bergeron, Labelle,

and Leroux, 1997; Joyal, 1981). Although not mentioned in the thesis, the formal power series
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semantics developed in Chapter 3 lends combinatorial semantics to SCRNs via species theory and

places SCRNs in the context of CT. This was proposed by Baez and Dolan, 2001, in the context

of quantum mechanics in order to formalize the concept of Feynman diagrams. For a while I

have speculated about the role that Lawvere's �xed point theorem could play in the mathematical

understanding of recursive phenomena in biology such as replication, the origins of life, and even

novel models of chemical computation. Formulating the theory of SCRNs in categorical language

would allow me to explore such questions. These are ideas that I intend to explore in the future.
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PREFACE

In the summer of 2013, I was a summer intern at Harvard Systems Biology under the mentorship of

Professor Walter Fontana. My project that summer revolved around roughly the following question:

suppose you have a system of particles that can polymerize linearly and asymmetrically. If the total

number of particles in the system is conserved, what is the equilibrium concentration of a polymer

of lengthn? Below I will describe the steps I followed in answering the question and the insights I

obtained in the process.

We will consider the system de�ned by the following set of reactions

Am + An
k+
�� *) ��
k�

Am+n;

where Ai denotes a polymer of lengthi. This model assumes that any two polymers may bind

to form a longer polymer, and that a polymer may break into any two polymers with the same

total length (See Figure 1.1). Furthermore, the model assumes that the binding and dissociation

rate constants are independent of the lengths of the polymers involved. Other mechanisms of

polymerization are possible, but this is the one I felt was su�ciently complex while remaining

mathematically tractable. The system of ordinary di�erential equations (ODEs) that results from

this mechanism and assuming the law of mass action is

dan

dt
=

n� 1Õ

i=1

k+ai an� i + 2
1Õ

i=1

k� ai+n � 2
1Õ

i=1

k+ai an �
n� 1Õ

i=1

k� an; (1.1)

whereai denotes the concentration ofAi at timet. This system bears similarities to Smoluchowski's

coagulation equation, with the exception that said equation does not incorporate polymer �ssion

(Smoluchowski, 1916). My summer project amounted to solving the system in Equation 1.1 in

equilibrium, where the derivatives vanish.

Figure 1.1: Model of asymmetric linear polymerization. Polymers of arbitrary length bind asym-
metrically and polymers can break along any of their bonds.
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Equation 1.1 simpli�es signi�cantly with the observation that, in equilibrium, it admits solutions

satisfying for all natural numbersm; n � 1

k� am+n = k+aman;

which is a much simpler system to solve. In this case,an denotes the equilibrium concentration of

An. That the system can be cast in this simple form is a result of of the fact that it satis�esdetailed

balance(Horn and Jackson, 1972; Onsager, 1931; Wegscheider, 1902). The resulting system of

equations can be solved via a recursion in which one obtains the concentration of polymersAn in

terms of the concentration of monomersA1 as follows

an = � n� 1an
1;

where� = k+• k� is anassociation constant. For convenience, let us use the unit-less variables

� n = � an so that the above equation becomes

� n = � n
1: (1.2)

Since all concentrations are expressed in terms of the (unit-less) monomer concentration� 1, it only

remains to determine its value in order to solve for the concentrations of all polymer lengths. We

assume that the total number of protomers is conserved and known. Since each polymer of length

i containsi protomers, we must have that

� =
1Õ

i=1

i � i; (1.3)

where� denotes the (unit-less) total protomer concentration in the mixture, i.e. the concentration

of monomers when no polymer has formed yet. Notice that using Equation 1.2, we can express the

summand in Equation 1.3 above in terms of the following derivative

i � i = i � i
1 = � 1

d� i
1

d� 1
:

Applying the same derivative and multiplication by� 1 to a geometric series of powers of� 1, we

can �nd an expression for the known total protomer concentration� 1 in terms of the unknown

variable� 1

� = � 1
d

d� 1

1Õ

i=1

� i
1 = � 1

d
d� 1

�
� 1

1 � � 1

�
=

� 1

¹1 � � 1º2
: (1.4)

This equation is quadratic in� 1 so it can be solved explicitly yielding

� 1 = �

 
1 �

p
1 + 4�

2�

! 2

:
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Finally, the concentration of polymers of lengthn in terms of the unit-less total concentration� is

given by1

� n = � n

 
1 �

p
1 + 4�

2�

! 2n

:

Pleased with the outcome of my summer project, I returned to my undergraduate institution, the

University of Texas at El Paso, for one last semester. I graduated in December of that year, which

meant that I had a few months before starting graduate school, whcih I spent working in the Fontana

lab. Motivated by my summer project, I decided that in those months I would pursue a stochastic

generalization of the same polymerization system whose deterministic formulation I had previously

cracked.

The stochastic analog to Equation 1.1 is thechemical master equation(CME) (Van Kampen, 1992).

The CME is an equation that de�nes the evolution of a probability distribution over discrete counts

of molecules, orstates, according to the reaction mechanism of a system. The state space of a

system of linear polymerization is fairly complex. Given a �nite amount of protomers the state

space is the set of di�erent ways of distributing those protomers into polymers. The size of that set

corresponds to what in number theory is known as theinteger partitionsof n (Andrews, 1984). For

example, if a total of4 protomers exist in a mixture, the state space corresponds to the5 di�erent

ways of expressing the number4 as a sum of positive integers:1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 3, 2+ 2,

and4. These5 sums can also be seen as states where each term is the length of a polymer. For

example, the sum1 + 1 + 2 corresponds to a state with two monomers and a dimer.

As opposed to writing down a general expression for the CME, which would have been extraordi-

narily complex, I opted to solving a small case explicitly and sought generalizations of that simple

solution. As we have already seen, a system with 4 protomers has 5 possible con�gurations, which

in equilibrium results in a system of 5 linear equations. The state space of the system with its

transitions is summarized in Figure 1.2. The solution to the resulting system of equations is a

5-dimensional vector of probabilities for each of the states of the state space. It can be obtained

through standard linear algebra methods. Rather than writing down here the full 5-dimensional

vector solution, we will focus our attention on the following common denominator to all 5 entries

of that vector

Z4 = 1 + 12� + 36� 2 + 24� 3: (1.5)
1An interesting property of this system is that when we have� = 1, the equilibrium concentrations of polymers

can be written in terms of even powers of the golden ratio

� n =

 
1 �

p
5

2

! 2n

:

I have never made much of this curious result, but it was a lovely way to conclude my summer project.
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Figure 1.2: State space for linear polymerization system with 4 protomers. Each of these states
corresponds to a class of microstates in which the constituting protomers are distinguishable from
ona another.

This expression is known as thepartition functionof the system. The partition function is a

normalization factor consisting of the sum of weights associated to each state. Each term in

Equation 1.5 corresponds to a class of states sharing the same total number of bonds, indicated

by the power of� . The coe�cient of the power of� is thedegeneracyof the class, given by the

number of ways of achieving the corresponding number of bonds and taking into consideration the

distinguishability of the protomers. For example, the term36� 2 is the contribution to the partition

function from states that have a total of2 bonds, which are represented by the sums2 + 12 and

1 + 3. Those two states can be collectively realized in36 di�erent ways using4 distinguishable

protomers. We also say that the class consists of 36microstates.

Since the weight of a single state is easy to calculate �it is given by� raised to the power of

the total number of bonds in the state� knowing the partition function is enough to compute all

probabilities. The partition function we calculated above corresponds to a single case, that of

having a total of 4 protomers, but its form suggests a hypothesis about the solution to the general

case: the partition function of a system withn protomers is given by the sum of Boltzmann terms

over all energy states weighted by their degeneracies. This kind of combinatorial reasoning became

the basis with which I solved for the equilibria of a number of di�erent assembly systems. Later I

would learn that the form of this partition function arises from a general product-of-Poisson pattern

of equilibrium distributions for systems with detailed balance (Anderson, Craciun, and Kurtz, 2010;

Whittle, 1986).

In addition to working on the stochastic formulation of linear polymerization, I spent my time after

undergraduate and before graduate school solving a variety of simple molecular assembly systems
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Figure 1.3: Assembled structure consisting of a sca�old joined to 4 particles via 4 bonds.

such as dimerization, sca�olds, branching structures, rings, etc, always assuming that the systems

satis�ed detailed balance and that the total numbers of protomers were conserved. I observed

that, in their deterministic formulations, the equilibrium concentration of an assembled structure

was given by the exponential of its energy of formation and the product of the concentrations of

monomers of the components it is made of. This was uncanny since it revealed a correspondence

between the graphical structure of an assembly and its equilibrium concentration. For example, the

assembly in Figure 1.3 would have a concentration of

c = � 4ab4;

wherec is the concentration of the assembly,� is an association constant,a is the concentration of

the middle component, andb is the concentration of the outer component. Notice that each of the

components of the assembly contributes one factor to the concentration.At this point, I began to

understand that I could reason graphically about the algebraic structures I was working withand

I began to wonder how far I could take that kind of reasoning. For stochastic systems, I observed

that the partition function could always be written as a sum over bond counts of the corresponding

energy term multiplied by the degeneracy of those bond counts. The complexity of these problems

lay mainly in counting those degeneracies for the di�erent assembly systems.

Already as a graduate student, I spent on the order of a week each year in Boston working on

progressively more general models of linear polymerization in both their deterministic and stochastic

formulations. As already noted, the equilibrium concentration of a polymer can be expressed as

the product of concentrations of its constituent monomers and the a�nities of its bonds. The

problem in those cases was therefore mainly to compute the concentrations of monomers in terms

of the known concentrations of total monomers. Of central importance to these problems was the

expression for the the total concentration of the system in equilibrium, i.e. the concentration of

the mixture regardless of molecular species. Its centrality was owed to the fact that the di�erent
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total protomer concentrations appeared as its derivatives, as it was the case in Equation 1.4. To

see this notice that, for example, for the assembly in Figure 1.3, which has concentration given by

c = � 4ab4, its contribution to the total concentration ofb is given by4c = bdc
db = 4� 4ab4. As a

result, the total concentration of a protomerx in an assembly system can be obtained by applying the

operatorx d
dx to the sum of the concentrations of all polymers �the mixture concentration. Given

the above-mentioned correspondence between the concentration of a polymer and its graphical

structure it turns out that the mixture concentration plays the role of a generating function of

polymers. The complexity for the deterministic formulations in equilibrium lay mainly in �nding

simple expressions for this generating function and computing its derivatives.

For their stochastic formulations, I employed the technique delineated above of computing partition

functions as sums of Boltzmann terms weighted by degeneracies. The complexity in this case

was mainly in computing those degeneracies. Initially I employed a number of di�erent forms of

combinatorial reasoning to compute the degeneracies of the various polymerization systems I was

considering. Given the increasing complexity of those systems, the bulk of my time in Boston

was initially spent in deriving combinatorial schemes for computing degeneracies. Some time in

2016 my mentor Walter Fontana suggested I read the bookAnalytic Combinatorics(Flajolet and

Sedgewick, 2009). The book presents generating function methods for counting combinatorial

classes of objects as well as the insights that complex analysis brings in approximating their co-

e�cients. I focused mostly on thecombinatorics, formal methods for writing and manipulating

generating functions, and not so much on theanalytics, methods from complex analysis for extract-

ing numbers from those functions. Still, using those methods I was able to derive in 5 minutes the

partition functions of assembly systems that had previously taken me days of hard work to derive.

Needless to say being able to compute partition functions so swiftly felt like magic compared to

the brute-force methods I had been using before. One of the main insights I obtained was that by

taking the exponential of the mixture concentration function from the deterministic formulations,

which is also the polymer generating function, I could obtain a generating function for the partition

functions themselves. When interpreted combinatorially, the exponential function is the generating

function of �nite sets, and hence the exponential of the generating function for polymers gives

the generating function of multisets of polymers, which correspond to states of the polymerization

system.

Not much later, I learned that what I had been doing informally �working with algebraic expres-

sions as if they were combinatorial objects� was in fact elegantly made rigorous in the theory

of combinatorial species(Bergeron, Labelle, and Leroux, 1997). My desire to better understand

the correspondence between algebra and combinatorics led me down a rabbit hole of progressively

more fundamental perspectives on combinatorics and formal power series culminating in a formu-



15

lation in terms ofhomotopy type theory(HoTT) (Univalent Foundations Program, 2013; Yorgey,

2014). Such perspectives lie at the vanguard of contemporary mathematics and it is my hope to

gain a better understanding of them so I can contribute to facilitating their assimilation into the

standard methods of mathematical biology. None of that deeper, more fundamental perspective

perspective appears in the formalism of the article that follows. Rather, the mathematics used there

is at the level of what can be found in Flajolet and Sedgewick, 2009. That is the case also for the

further development performed in Chapter 3. Formulation of these techniques in the context of

HoTT is, however, underway and will be part of my research agenda for years to come.

My contribution to this article was mainly in the form of the mathematical methods, theorems,

proofs, and analysis of equations. The writing was mainly done by my mentor Walter Fontana, with

the exception of sections 1.7.7 and 1.7.8 of the supplementary material, which were done by me.

Although I participated in all aspects of the conception of the project, the biological perspective is

mainly due to my collaborators. All plots and simulations were done also by Walter Fontana.
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ABSTRACT

Sca�old proteins organize cellular processes by bringing signaling molecules into interaction,

sometimes by forming large signalosomes. Several of these sca�olds are known to polymerize.

Their assemblies should therefore not be understood as stoichiometric aggregates, but as com-

binatorial ensembles. We analyze the combinatorial interaction of ligands loaded on polymeric

sca�olds, in both a continuum and discrete setting, and compare it with multivalent sca�olds with

�xed number of binding sites. The quantity of interest is the abundance of ligand interaction

possibilities�the catalytic potentialQ�in a con�gurational mixture. Upon increasing sca�old

abundance, sca�olding systems are known to �rst increase opportunities for ligand interaction and

then to shut them down as ligands become isolated on distinct sca�olds. The polymerizing system

stands out in that the dependency ofQ on protomer concentration switches from being dominated

by a �rst order to a second order term within a range determined by the polymerization a�nity.

This behavior boostsQ beyond that of any multivalent sca�old system. In addition, the subsequent

drop-o� is considerably mitigated in thatQ decreases with half the power in protomer concentration

than for any multivalent sca�old. We explain this behavior in terms of how the concentration pro�le

of the polymer length distribution adjusts to changes in protomer concentration and a�nity. The

discrete case turns out to be similar, but the behavior can be exaggerated at small protomer numbers

because of a maximal polymer size, analogous to �nite-size e�ects in bond percolation on a lattice.
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1.1 Introduction

Protein-protein interactions underlying cellular signaling systems are mediated by a variety of

structural elements, such as docking regions, modular recognition domains, and sca�old or adapter

proteins (Bhattacharyya et al., 2006; Good, Zalatan, and Lim, 2011). These devices facilitate

both the evolution and control of connectivity within and among pathways. Since the sca�olding

function of a protein can be conditional upon activation and also serve to recruit other sca�olds,

the opportunities for plasticity in network architecture and behavior are abundant.

Sca�olds are involved in the formation of signalosomes �transient aggregations of proteins that

process and propagate signals. A case in point is the machinery that tagsb-catenin for degradation

in the canonical Wnt pathway.b-catenin is modi�ed by CK1a and GSK3b without binding any

of these kinases directly, but interacting with them through the Axin sca�old (Ikeda et al., 1998;

Liu et al., 2002). In addition, the DIX domain in Axin allows for oriented Axin polymers (Fiedler

et al., 2011), while APC (another sca�old) can bind multiple copies of Axin (Behrens et al., 1998),

yielding Axin-APC aggregates to which kinases and their substrates bind.

By virtue of their polymeric nature, sca�old assemblies like these have no de�ned stoichiometry and

may only exist as statistical ensembles rather than a single stoichiometrically well-de�ned complex

(Deeds et al., 2012; Suderman and Deeds, 2013). As a heterogeneous mixture of aggregates with

combinatorial state, theb-catenin destruction system thus appears to be an extreme example of

what has been called a �pleiomorphic ensemble� (Mayer, Blinov, and Loew, 2009).

Sca�old-mediated interactions are characteristically subject to the prozone or �hook� e�ect. At

low sca�old concentrations, adding more sca�old facilitates interactions between ligands. Beyond

a certain threshold, however, increasing the sca�old concentration further prevents interactions by

isolating ligands on di�erent sca�old molecules (Bray and Lay, 1997; Ferrell, 2000; Levchenko,

Bruck, and Sternberg, 2000). For a sca�oldSthat binds with a�nity � an enzymeAand a substrate

B, present at concentrationstA andtB, the threshold is at1• � + ¹tA + tBº•2.

In this contribution, we de�ne and analyze a simple model of enzyme-substrate interaction mediated

by a polymerizing sca�old. The model does not take into account spatial constraints of polymer

chains and therefore sits at a level of abstraction that only encapsulates combinatorial aspects of

a pleiomorphic ensemble and brie�y peeks down the trail of critical phenomena often associated

with phase-separation (Bergeron-Sandoval, Safaee, and Michnick, 2016; Li et al., 2012).

1.2 The polymerizing sca�old system

Let S (the sca�old) be an agent with four distinct binding sitesf a,b,x,yg. At site y, agentS can

reversibly bind site x of anotherSwith a�nity � , forming (oriented) chains. For the time being, we

exclude the formation of rings. Sites a and b can reversibly bind an agent of typeA (the enzyme)
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and of typeB (the substrate) with a�nities� and � , respectively. All binding interactions are

independent. When the system is closed, the total concentrations ofA, B, andS are given bytA,

tB, andtS. This setup allows for a variety of con�gurations as shown on the left of the arrow in

Fig. 1.4. We posit that each enzymeA can act on each substrateB bound to the same complex.

We refer to the numberpq of potential interactions enabled by a con�guration with sum formula

ApSnBq as that con�guration's �catalytic potential�Q. By extension we will speak of the catalytic

potentialQ of a mixture of con�gurations as the sum of their catalytic potentials weighted by their

concentrations.

Figure 1.4: Enzyme-substrate interaction on a polymeric sca�old. In the polymerizing model,
sca�old protomersSbinding each other with a�nity� yield a distribution of polymers of varying
length to which enzymesA and substratesB bind with a�nities � and � , respectively. For each
con�guration, the rate of conversion to product is a function of the con�guration's catalytic potential
Q, which is the number of possible interactions between boundA andB agents. Here, each of the
four As can interact with each of the threeBs for a total ofQ = 12possible interactions.

If we assume that the assembly system equilibrates rapidly, the rate of product formation is given by

Qkcat with kcat the catalytic rate constant andQ the equilibrium abundance of potential interactions

betweenA- and B-agents. Rapid equilibration is a less realistic assumption than a quasi-steady

state but should nonetheless convey the essential behavior of the system. In the following we �rst

provide a continuum description of equilibriumQ in terms of concentrations (which do not imply

a maximum polymer length) and then a discrete statistical mechanics treatment for the average

equilibriumQ (wheretS is a natural number and implies a maximum length).

In the present context, molecular speciesYi that assemble fromT distinct building blocks (�atoms�)

Xj through reversible binding interactions have a graphical (as opposed to geometric) structure that

admits two descriptors:! i , the number of symmetries ofYi (here! i = 1 because the polymers are

oriented), and� i; j , the number of atomsXj in Yi . The equilibrium concentrationyi of anyYi is given

by yi = " i
Î T

j=1¹xj º� i; j , where" i = 1•! i
Î

r 2P Kr is the exponential of the free energy content ofYi ,

with Kr 2 f �; �; � g the equilibrium constant of ther th reaction along some assembly pathP. The

xj are the equilibrium concentrations of free atoms of typej (hereT = 3). Hence," i = � p� q� r

for aYi that containsp bonds betweenA andS, q bonds betweenB andS, andr bonds betweenS

protomers.
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Consider �rst the polymerization subsystem. From what we just laid out, the equilibrium concen-

tration of a polymer of lengthl is � l � 1sl , wheres is the equilibrium concentration of monomers of

S. Summing over all polymer concentrations yields the total abundance of entities in the system,

W¹sº =
Í 1

l=1 � l � 1sl = s•¹1 � � sº. W¹sº gives us a conservation relation,tS = s dW¹sº•ds, from

which we obtains as:

s =
1

4�

� p
4 + 1•¹ � tSº �

p
1•¹ � tSº

� 2

: (1.6)

Using (1.6) in� l � 1sl yields the dependence of the polymer size distribution on parameterstS and

� . W¹sº has a critical point atscr = 1• � , at which the concentrations of all length classes become

identical. It is clear from (1.6) thats can never attain that critical value for �nite� andtS.

1.3 The chemostatted case

In a chemostatted system,scan be clamped at any desired value, including the critical point1• � at

which ever more protomers are drawn from the reservoir into the system to feed polymerization. We

next include ligandsAandB at clamped concentrationsa andb. Let ApSnBq be the sum formula of

a sca�old polymer of lengthnwith p A-agents andq B-agents. There are
�n
p

� � n
q

�
such con�gurations,

each with the same catalytic potentialQ = pq. Summing up the equilibrium abundances of all

con�gurations yields

W¹s; a; bº = a + b +
s¹1 + � aº¹1 + � bº

1 � � s¹1 + � aº¹1 + � bº
: (1.7)

(1.7) corresponds to theW¹sº of ligand-free polymerization by a coarse-graining that only sees

sca�olds regardless of their ligand-binding state, i.e. by dropping terms not containings and

substitutings¹1+ � aº¹1+ � bº ! s. (1.7) indicates that, at constant chemical potential forA, B and

S, the presence of ligands lowers the critical point of polymerization toscr = 1•¹ � ¹1+ � aº¹1+ � bºº

because, in addition to polymerization, freeSis also removed through binding withA andB.

Qpoly, theQ of the system, is obtained by summing up theQ of each con�guration weighted by its

equilibrium concentration (SI section 1). UsingW, we computeQpoly as

Qpoly = ab
@2

@a@b
W = � a� b s

1 + � s¹1 + � aº¹1 + � bº
¹1 � � s¹1 + � aº¹1 + � bºº3

: (1.8)

Note thatQpoly inherits the critical point ofW. The behavior of the chemostatted continuum model

is summarized in Fig. 1.5.

Qpoly (red) diverges as the polymerization system approaches the critical point. The inset of Fig.

1.5A shows the sca�old length distribution at the black dot on theQpoly-pro�le. The red dotted curve

reports the length distribution in the presence of ligands,»fA� SkB� g¼= � � 1¹� s¹1+ � aº¹1+ � bººk,
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Figure 1.5: Catalysis in a chemostatted polymerizing sca�old system. A: The red graph shows
the catalytic potentialQ as a function of chemostatteds according to (1.8) for� = � = 106 M � 1,
� = 108 M � 1, anda = b = 15 � 10� 9 M (about2 104 molecules in10� 12 L). The blue curve is
the special case of� = 0, which is the monovalent sca�old system,Q = � a� b s. The inset shows
the sca�old length distribution ats = 7:15 nM, corresponding toQ at the black �lled circle. The
critical point in this example isscr � 9:7 nM. Panel B: The catalytic potential ats = 7:15 nM as a
function of clampedb(the substrate); other parameters as in A. Red: polymerizing sca�old system;
blue: monovalent sca�old; green: chemostatted Michaelis-Menten in whichA binds directly toB
with a�nity � .

whereas the black dotted curve reports the length distribution in the absence of ligands,sk � » Sk¼=

� k� 1sk. The presence ofA andB shifts the distribution to longer chains. The blue curve in Fig.

1.5A shows the catalytic potential of the monovalent sca�old,� = 0. It increases linearly withs,

but at an insigni�cant slope compared with the polymerizing case, which responds by raising the

size (surface) distribution, thus drawing in moreSfrom the reservoir to maintain a givens; this, in

turn, draws moreAandB into the system. In Fig. 1.5B,s is �xed andb, the substrate concentration,

is increased. The green straight line is the Michaelis-Menten case, which consists in the direct

formation of anAB complex and whoseQ = � a b is linear inb. The red line is the polymerizing

sca�old system whosescr can be attained by just increasingb, (1.8). All else being equal, there is

a b at which more substrate can be processed than through direct interaction with an enzyme. The

slope of the monovalent sca�old (blue) is not noticeable on this scale.

1.4 The continuum case in equilibrium

We turn to the system with �xed resourcestS, tA andtB, expressed as real-valued concentrations.

(1.8) for Qpoly is now evaluated at the equilibrium concentrationss, a and b of the free atoms.

These are obtained by solving the system of conservation equations,tS = s@W•@s, tA = a @W•@a,

tB = b@W•@b(solutions in SI, section 1). The orange curve in Fig. 1.6A depicts the saturation curve

of the catalytic potentialQdirect of the Michaelis-Menten mechanism for a �xed concentrationtA of
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enzyme as a function of substratetB. The green curves are saturation pro�les of the polymerizing

sca�old system at varying protomer abundancestSunder the same condition. As in the chemostatted

case, beyond some value oftS, the catalytic potential of the polymerizing system exceeds that from

direct interaction.

Figure 1.6: Catalysis in a closed polymerizing sca�old system. A: The orange curve shows the
saturation of catalytic potentialQ of the direct enzyme (A)-substrate (B) interaction, a classic
Michaelis-Menten mechanism, as a function oftB for � = 107 M � 1 andtA = 15 � 10� 9 M. The
green curves depict the saturation curves forQ of the poly-sca�old with a�nities � = � = 107 M � 1

and� = 108 M � 1 at various protomer abundancestS. B: The catalytic potential surface for the
poly-sca�old as a function oftS and� ; other parameters as in panel A. The red ball corresponds to
the conditions marked by the red dot in panel A (tB = 5 � 10� 7 M). The �at yellow surface is theQ
for the direct enzyme-substrate interaction (i.e. the intersection of the vertical dotted line in panel
A with the orange curve). See text for discussion.

Qpoly can be modulated not only by the protomer concentrationtS, but also the protomer a�nity�

(Fig. 1.6B). IncreasingtS improvesQpoly dramatically at all a�nities up to a maximum after which

enzyme and substrate become progressively separated due to the prozone e�ect. At all protomer

concentrations, in particular around the maximizing one,Qpoly always increases with increasing

a�nity � . Fig. 1.6B suggests that for the modulation through� to be most e�ective the protomer

concentration should be close to the maximizingtS.
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1.4.1 Comparison with multivalent sca�old systems

With regard toQ, a polymer chain of lengthn is equivalent to a multivalent sca�old agentS¹nº with

n binding sites forA andB each. It is therefore illuminating to compare the polymerizing system

with multivalent sca�olds and their mixtures.

It is straightforward to calculate the equilibrium concentration of con�gurationsApS¹nºBq for

an n-valent sca�old by adopting a site-oriented view that exploits the independence of binding

interactions. The calculation (SI section 2) yields as a general result that the catalytic potential for

an arbitrary sca�olding system, assuming independent binding ofA andB, consists of two factors:

Q = p¹tsit; tA; � ºp¹tsit; tB; � º
|                       {z                       }

I

Qmax¹®tSº
|     {z     }

I I

: (1.9)

The dimensionless functionp¹tsit; tX; 
 º denotes the equilibrium fraction of X-bindingsites, with

total concentrationtsit, that are occupied by ligands of typeX, with total concentrationtX:

p¹tsit; tX; 
 º =

 tX � 
 tsit � 1 +

p
4
 tX + ¹
 tX � 
 tsit � 1º2


 tX � 
 tsit + 1 +
p

4
 tX + ¹
 tX � 
 tsit � 1º2
:

This expression is the well-known dimerization equilibrium, computed at the level of sites rather

than sca�olds and taken relative totsit (SI section 2).

FactorI depends on the total concentration of ligand binding sites (for each type) but not on how

these sites are partitioned across the agents providing them. For example, a multivalent sca�old

S¹nº, present at concentrationtS¹nº, providestsit = ntS¹nº binding sites and the probability that a site

of any particular agent is occupied is the same as the probability that a site in a pool ofntS¹nº sites

is occupied. For a heterogeneous mixture of multivalent sca�old agents, we havetsit =
Í n

i=1 i tS¹i º;

for a polymerizing system in which each protomerSexposes one binding site, we havetsit = tS.

FactorII is the maximalQ attainable in a sca�olding system. This factor depends on how sites

are partitioned across sca�old agents with concentrations®tS = ¹tS¹1º; : : : ;tS¹nºº, but does not depend

on ligand binding equilibria. For example, a system of multivalent agents at concentrations®tS has

Qmax =
Í n

i=1 i2tS¹i º. The polymerizing sca�old system is analogous, butn = 1 and thetS¹i º are

determined endogenously by aggregation:tS¹i º = si = � i � 1si . This yields simple expressions for

the catalytic potential of a polymerizing sca�old,Qpoly, and multivalent sca�old,Qmulti:

Qpoly = p¹tS; tA; � ºp¹tS; tB; � º
s¹1 + � sº
¹1 � � sº3

(1.10)

Qmulti = p¹n tS¹nº; tA; � ºp¹n tS¹nº; tB; � ºn2tS¹nº

with s in (1.10) given by (1.6). (1.10) is equivalent to (1.8). While (1.8) requires solving a system

of mass conservation equations to obtaina, b, ands, Qpoly as given by (1.10) does not refer toa
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andb, but only tos as determined by the ligand-free polymerization subsystem. TheQ that shapes

the Michaelis-Menten rate law under the assumption of rapid equilibration of enzyme-substrate

binding has the same structure as (1.9):Qdirect = p¹tA; tB; � ºtA, wheretA andtB are the total enzyme

and substrate concentration, respectively. The presence of a second concurrent binding equilibrium

in (1.9) characterizes the prozone e�ect.

Adding sites, all else being equal, necessarily decreases the fractionp of sites bound. Speci�cally,

factorI tends to zero like1•t2
sit for largetsit. In contrast,Qmax increases monotonically, since adding

sites necessarily increases the maximal number of interaction opportunities betweenA andB. For

a multivalent sca�oldQmax diverges linearly withtsit. For the polymerizing systemQmax diverges

like t3•2
sit (SI section 5).

Fig. 1.7A provides a wide-range comparison ofQpoly (red) withQmulti for various valencies (blue)

at the same site concentrationtsit = tS.
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Figure 1.7: Multivalent sca�olds and polymerizing sca�old. A: Large-scale view of the catalytic
potentialQ as a function of site concentrationtS. The blue curves depictQmulti for n-valent sca�olds
(lower: n = 1, higher: n = 10). The location of the peak ofQmulti is independent of the valency
n when expressed as a function oftsit = tS (SI section 5, Eq. 38). The red and orange curves
depictQpoly for two a�nities (red: � = 108 M � 1, orange: � = 1010 M � 1). Other parameters:
� = � = 107 molecules� 1, tA = 1:5 � 10� 8 M, tB = 5 � 10� 7 M. On a log-log scale, the up-slope
of Qpoly is 1 initially�the same as for multivalent sca�olds�and increases to2 prior to reaching
the prozone peak. The down-slope is� 1•2, whereas it is� 1 for multivalent sca�olds (SI section
5). B: Close-up of the peak region in panel A for the red curve; multivalent sca�olds were added
for n = 2; 3; 5. The slight asymmetry in theQ pro�les of multivalent sca�olds stems from the
di�erences in ligand concentrations of our running example; see also SI, section 11. The yellow dot
on theQpoly curve corresponds to the red dot in Fig. 1.6. A pink square on a blue curve of valency
n marksQmulti when the sca�old concentrationtS¹nº is the same as the concentration of polymers
of sizen (sn) at thetS at which the length classn dominates the polymerizing system (SI section 3
Fig. S2B). A blue dot indicates theQmulti when the sca�old concentrationtS¹nº = 1• � , which is the
asymptotic (and maximal) value ofsn, for all n, in the limit of in�nite tS. These markers serve to
show that within the most populated length classes the prozone peak is never reached. MM labels
the Michaelis-Menten case of Fig. 1.6 for comparison. See text for details. C: The solid lines in
the graph exemplify the absence of a prozone within an isolated length classn, heren = 3, and
the presence of a prozone for the same class in the context of all other classes. Green solid:Qmulti
for n = 3 usingtS¹3º = s3 andtsit = 3tS¹3º. Red solid:Qmulti for n = 3 usingtS¹3º = s3 but tsit = tS.
The dotted lines illustrate the situation for the length classn = 3 as a function of a�nity � (upper
abscissa, same ordinate). In this dimension, the bending of the curves isnotdue to a prozone e�ect,
since the number of sites does not increase; see text. D: Cumulative sums fromi = 1 to n = 30 of
Qmulti with tS¹i º = si andtsit =

Í n
i=1 i tS¹i º.
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On a log-log scale, sca�olds of arbitrary valencyn exhibit aQmulti whose slope as a function oftsit

is 1, with o�set proportional ton, until close to the peak. For the polymerizing sca�old, the �rst

order term of the series expansion ofQpoly is independent of the a�nity� (SI section 5), whereas

the second order term is linear in� . Hence, for smalltsit, the polymerizing system behaves like a

monovalent sca�old and any multivalent sca�old o�ers a better catalytic potential. However, astS
increases, the equilibrium shifts markedly towards polymerization, resulting in a slope of2, which

is steeper than that of any multivalent sca�old. The steepening ofQpoly is a consequence of longer

chains siphoning o� ligands from shorter ones (SI, section 4). Alln-valent sca�olds reach their

maximalQmulti at the same abundance of sitestsit = n tS¹nº = tS and beforeQpoly. The superlinear

growth inQmax of the polymerizing system softens the decline ofQpoly to an ordert � 1•2
S for largetS.

In contrast, the decline ofQmulti is of ordert � 1
sit . In sum, the polymerizing sca�old system catches

up with any multivalent sca�old, reaches peak-Q later, and declines much slower.

The mitigation of the prozone e�ect begs for a mechanistic explanation, since a prozone could occur

not only within each length class but also between classes. To assess the within-class prozone, we

think of a length classk as if it were anisolatedk-valent sca�old population at concentrationtS¹kº =

sk = � k� 1sk with Qmulti = p¹k sk; tA; � ºp¹k sk; tB; � ºk2sk. For all k, sk approaches monotonically

the limiting value1• � astS ! 1 (SI section 2, Fig. S1A). Assuming equal a�nity� for both

ligandsA andB, peak-Qmulti for a k-valent sca�old occurs attpeak
S¹kº

= k� 1¹� � 1 + ¹tA + tBº•2º. Thus,

when established through a polymerization system,tS¹kº can never exceed the concentration required

for peak-Qmulti for anyk up tok = � • � (Fig. 1.7B, blue dots). For the� used in the red curve of Fig.

1.7B this lower bound isk = 10 and the actual value, given employed values oftA andtB, is about

k = 35. At the yellow marker and at peak-Qpoly in Fig. 1.7B98% and68%, respectively, of all sites

are organized in length classes below10. Thus, the most populated lengths avoid the within-class

prozone entirely (for examplek = 3 as depicted in Fig. 1.7C, green solid line). Yet, the actual

behavior of thekth length class occurs in the context of all other classes, i.e. at site concentration

tS, not justk sk. In this frame, the class indeed exhibits a prozone (Fig. 1.7C, red solid line). The

overall prozone of the polymerizing sca�old system is therefore mainly due to the spreading, and

ensuing isolation, of ligandsbetweenlength classes. This �entropic� prozone becomes noticeable

only when including all length classes up to relatively highk because the majority of sites are

concentrated at lowk where they are even jointly insu�cient to cause a prozone, Fig. 1.7D.

At constanttS and in the limit � ! 1 , sk tends toward zero for allk (SI, Fig. S3C). In the

� -dimension, unlike in thetS-dimension, the classsk itself has a peak. As� increases, thek of the

class that peaks at a given� increases. Consequently, theQmulti of each length-class in isolation

will show a �fake� prozone with increasing� , due entirely to the polymerization wave passing

through classk as it moves towards higherk while �attening (Fig. 1.7C, dotted lines). Since there
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is no site in�ation, the overallQpoly increases monotonically.

E�ects of ligand imbalance and unequal ligand binding a�nities are discussed in the SI, section

11.

1.4.2 Interaction horizon

The assumption that everyA can interact with everyB attached to the same sca�old construct

is unrealistic. It can, however, be tightened heuristically without leaving the current level of

abstraction. We introduce an �interaction horizon,�qmax¹l; hº, de�ned as the radiush in terms of

sca�old bonds within which a boundA can interact with a boundB on a polymer of sizel . In this

picture, anA can interact with at most2h + 1 substrate agentsB: h to its �left,� h to its �right�

and the one bound to the same protomer. The interaction horizon only modulates theQmax of a

polymer of lengthl , replacing the interaction factorl2 with (SI section 6):

qmax¹l; hº =
�

l ¹2h + 1º � h¹h + 1º; for 0 � h � l � 1
l2; for h � l

:

The horizonh could be a function ofl . One case, in whichh covers a constantfraction of a

polymer, is treated in section 6 of the SI. In a more restrictive scenario, we assume a �xed horizon

independent of length, which could re�ect a constant local �exibility of a polymer chain. With the

assumption of a constanth, (1.10) becomes (SI section 6)

Qpoly = p¹tS; tA; � ºp¹tS; tB; � º
s

�
1 + � s � 2¹� sºh+1�

¹1 � � sº3
: (1.11)

In (1.11), the numerator of theQmax term of (1.10) is corrected by� 2s¹� sºh+1. Since� s < 1 for

all �nite tS and� , even moderate values ofh yield only a small correction to the base case of a

limitless horizon.

1.5 The discrete case in equilibrium

Replacing concentrations with particle numberstS; tA; tB 2 N in a speci�ed reaction volume yields

the discrete case. In this setting, we must convert deterministic equilibrium constants, such as� to

corresponding �stochastic� equilibrium constants� s through� s = � •¹ AVº, whereA is Avogadro's

constant andV the reaction volume to which the system is con�ned. For simplicity, we overload

notation and use� for � s.

The basic quantity we need to calculate is the average catalytic potentialhQpolyi =
Í

l;i; j i j hnli j i ,

wherehnli j i is the average number of occurrences of a polymer of lengthl with i and j ligands of

typeAandB, respectively. Conceptually,hnli j i counts the occurrences of an assembly con�guration

Ai Sl Bj in every possible state of the system weighted by that state's Boltzmann probability. In the

SI (section 7), we show thathnli j i is given by the number of ways of building one copy ofAi Sl Bj
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from given resources (tS, tA, tB) times the ratio of two partition functions�one based on a set of

resources reduced by the amounts needed to build con�gurationAi Sl Bj , the other based on the

original resources. The posited independence of all binding processes in our model implies that

the partition function is the product of the partition functions of polymerization and dimerization,

which are straightforward to calculate (SI section 8). While exact, the expressions we derive for

hQpolyi (SI, section 8, Eq. 66) andhQmultii (SI, section 8, Eq. 69) are sums of combinatorial

terms and therefore not particularly revealing. For numerical evaluation of these expressions, we

change the size of the system by a factor� (typically � = 0:01), i.e. we multiply volume and

particle numbers with� and a�nities with 1• � . Such re-sizing preserves the average behavior. Our

numerical examples therefore typically deal with10-1000particles and stochastic a�nities on the

order of10� 2 to 10molecules� 1.

Figure 1.8: Maximer. A: The surface depicts the probability of observing the maximer as a
function of tS and� . B: Here the maximer probability is graphed as function of the probability
p that a bond exists between two protomers.p is a function oftS and � and can be calculated
exactly. Each curve corresponds to a particulartS with varying � . tS ranges from10 (topmost
curve) to100 (bottom curve) in increments of10, while � ranges from1 to 1000. C: Mass
distributions in the polymerizing sca�old model. Any curve depicts the fraction of protomers in all
length classesn, computed asn � n� 1tS!•¹ tS � nº! Z(poly)

tS� n • Z(poly)
tS with Z(poly)

tS the partition function
for polymerization withtS protomers (SI, section 8). Each curve corresponds to a given number
of protomers:tS = 5 (blue),10 (green),15 (plum),20 (red),25 (orange),30 (purple),40 (brown);
a�nity � = 3 in all cases. WhentS is small, the longest possible polymer�the �maximer��is
realized with appreciable frequency and dominates the mass distribution. AstS increases, at �xed
� , the maximal length class increases too but its dominance fades.
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The key aspect of the discrete case is the existence of a largest polymer consisting of alltSprotomers.

We refer to it as the �maximer�; no maximer exists in the continuum case because of the in�nite

fungibility of concentrations (Fig. S9). Since there is only one maximer for a giventS, its expectation

is the probability of observing it:hsmaxi = tS! � tS� 1• Z(poly)
tS , whereZ(poly)

tS is the partition function

of polymerization (SI, sections 8 and 9). This probability is graphed as a function oftS and� in Fig.

1.8A. At any �xed tS, the probability of observing the maximer will tend to1 in the limit � ! 1 .

This puts a ceiling toQmax that is absent from the continuum description. In thetS-dimension, the

maximer probability decreases astS increases at constant� .

Polymerization as considered here has a natural analogy to bond percolation on a 1-dimensional

lattice (SI, section 9). The probability of percolation (in which the entire lattice becomes one

connected component) is parametrized by the probabilityp of a bond between adjacent lattice sites.

In the case of polymerization we can compute the probabilityp that any two protomers are linked

by a bond as a function oftS and� . For continuum but not for discrete polymerization, the analogy

to percolation on an in�nite 1D lattice is actually an exact correspondence (SI, section 9). For

the present purpose, the percolation perspective is useful in that it combines the two main model

parameterstS and� in the single quantityp (Fig. 1.8B). As in �nite-size percolation, the salient

observation is that for smalltS the maximer has a signi�cant probability of already occurring at

modest a�nities; for example, given10 protomers and discrete binding a�nity1, p is already

0:78and the maximer probability a respectable0:06. For largertS, the maximer loses signi�cance

unless the a�nity is scaled up correspondingly (SI section 10). This is also re�ected in the mass

distribution, Fig. 1.8C.

Fig. 1.9A compares the discrete polymerizing sca�old system with discrete multivalent sca�olds,

much like Fig. 1.7A for the continuum case. The behavior of the discrete case is essentially similar

to that of the continuum case�with a few nuances that are prominent at low particle numbers and

high a�nities, such as the topmost orange curve. ItshQpolyi -pro�le does not hug the monovalent

pro�le (bottom green chevron curve) to then increase its slope into the prozone peak as in the

continuum case (Fig. 1.7A). A behavior like in the continuum case is observed for the lower orange

and red curves, for which� is much weaker. In the continuum case, the a�nity does not a�ect

slope�the slope always shifts from1 to 2 within some region of protomer abundance; rather,

the a�nity determines where that shift occurs (Fig. 1.7A). The higher the a�nity, the earlier the

shift. The topmost orange curve could be seen as realizing an extreme version of the continuum
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