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Abstract

The development of autonomous molecular computers capable of making independent decisions
in vivo regarding local drug administration may revolutionize medical science. Recently Benenson
et al. [An autonomous molecular computer for logical control of gene expression, Nature 429 (2004)
423–429.] have envisioned one form such a “smart drug” may take by implementing an in vitro
scheme, in which a long DNA state molecule is cut repeatedly by a restriction enzyme in a manner
dependent upon the presence of particular short DNA “rule molecules.” To analyze the potential of
their scheme in terms of the kinds of computations it can perform, we study an abstraction assuming
that a certain class of restriction enzymes is available and reactions occur without error. We also
discuss how our molecular algorithms could perform with known restriction enzymes. By exhibiting
a way to simulate arbitrary circuits, we show that these “Benenson automata” are capable of computing
arbitrary Boolean functions. Further, we show that they are able to compute efficiently exactly those
functions computable by log-depth circuits. Computationally, we formalize a new variant of limited
width branching programs with a molecular implementation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of creating a molecular “smart drug” capable of making independent decisions
in vivo regarding local drug administration has excited many researchers[10]. Recently,
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Benenson et al.[4] (based on [5,3]) have envisioned what such an automaton may look like,
and reported a partial implementation of the design in vitro. They made a system consisting
of an enzyme and a set of DNA molecules which tests whether particular RNA molecules
are present in high concentration and other particular RNA molecules are present in low
concentrations, and releases an output DNA molecule in high concentration only if the
condition is met. The actual computation process consists of the enzyme cutting a special
DNA molecule in a manner ultimately determined by the concentrations of input mRNA
molecules present in solution. The authors suggest that such a design, or a similar one, can
be used to detect concentrations of specific mRNA transcripts that are indicative of cancer
or other diseases, and that the output can take the form of a “therapeutic” ssDNA.

The key computational element in the scheme is an enzyme that cuts DNA in a controlled
manner. Nature provides many biologically realizable methods of cutting DNA that can
be adapted for computing. For instance, bacteria have evolved methods to cut the DNA
of invading viruses (phages) with numerous enzymes called restriction enzymes. Most
restriction enzymes cut double stranded DNA exclusively at sites where a specific sequence,
called the recognition site, is found. Some restriction enzymes leave a so-called “sticky end
overhang” which is a region of single stranded DNA at the end of a double stranded DNA
molecule. Sticky ends are important because if there is another DNA molecule with a
complementary sticky end, the two molecules can bind to each other forming a longer
double stranded DNA strand.

Benenson et al. use type IIS restriction enzymes, which cut double stranded DNA at
a specific distance away from their recognition sites in a particular direction [11]. These
enzymes were first considered in molecular computation by Rothemund [9] in an non-
autonomous simulation of a Turing machine. For an example of a type IIS restriction
enzyme, considerFokI which is known to cut in the manner shown in Fig. 1(a). Note that
after FokI cuts, the DNA molecule is left with a sticky end overhang of four bases. The
automaton of Benenson et al. is based on a series of restriction enzyme cuts of a longstate
molecule. Each cut is initiated by the binding of acutting rule moleculeto the state molecule
via matching sticky ends (Fig. 1(b)). Cutting rule molecules have an embedded restriction
enzyme recognition site at a certain distance from their sticky end. The number of base pairs
between the restriction enzyme recognition site and the sticky end on the cut rule molecule
determines the number of bases that are cut away from the state molecule after the rule
molecule attaches. Since the sequence of the sticky end on the state molecule determines
which rule molecule attaches, it determines how many bases are cut off the state molecule
in the presence of some set of rule molecules. Fig. 1(b) illustrates how TGGC can encode
the “cut seven bases” operation when the appropriate cutting rule molecule is present. After
each cut, a new sticky end is revealed which encodes the location of the next cut, and the
process can continue.

Benenson et al. [4] describe how any set of RNA or DNA molecules can act as input
to their automation. In particular, each input species converts some rule molecules that are
initially inactive into active form, and inactivates others that are initially active. The net
effect of multiple pre-processing steps is that the presence of input molecules in either high
or low concentration determines which rule molecules will be available. Note that input is
provided all at once, at the beginning of the computation; the activated rule molecules are
used by the automaton as needed during the course of the computation.
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Fig. 1. (a)FokI recognition and cut sites on a generic DNA substrate. The parametersD andS will be used to
characterize restriction enzymes in this paper.D is called the cutting range andSthe sticky end size. (b) Example
of a cutting rule application. (c) Illustration of the output loop. Cutting far enough opens the loop. (In (a), (b), (c)
the top strand is 5′ → 3′.)

A single-stranded loop is attached to the end of the state DNA molecule (Fig.1(c)).
The loop is held closed by the remaining double stranded part of the state molecule— the
so-calledstem. If the state molecule is cut close enough to the loop, the loop is opened and
released. Assuming the loop has a chemical function only when open (e.g. it is translated to
create a protein or effectively acts as antisense DNA), this results in the production of the
“therapeutic” molecule in an input-dependent manner. If the system worked without error,
and supposing that the input RNA molecules are either present in high concentration or not
at all, the output DNA molecule should be released if and only if a set of RNAs is present
that results in a set of rule molecules that cut the state DNA molecule sufficiently far. To
accommodate the possibility of error, which we ignore here, Benenson et al. implement
two possible outputs that compete between each other, with the one produced in largest
quantities “winning.”

We are interested in the class of computations that can be implemented using the approach
developed by Benenson et al. [4]. One possibility of performing complex computations using
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this scheme is to use the output DNA molecule of one Benenson automaton as an input
for another, allowing feed-forward circuits to be implemented. However, we would like to
study the computational power of a system with a single state molecule. Showing how to
compute complex functions with a single Benenson automaton examines the computational
power of the basic unit of computation, and makes it clear how one can compute even more
complex functions with many state molecules.

In the first part of this paper, we formalize the computational process implemented by
Benenson et al. using a system with a single state molecule. As part of our abstraction, we
are going to ignore concentration dependence and other analog operations such as those
involving probabilistic competition between various reactions, and will focus on a binary
model in which a reaction is either possible or not.1 We treat the state molecule and the
set of possible cutting rule molecules as a program specifying what computation is to be
performed, while the input determines which rule molecules are active. Each rule molecule
depends upon a specific input RNA species which either activates or deactivates it, or it may
be always active. We will say that a Benenson automaton outputs 1 if at some point at least
a total ofp bases has been cut off, wherep represents the point in the state string cutting
beyond which opens the loop. Otherwise, we say it outputs a 0. Our constructions will cut
the state molecule to leave no stem on a 1 output, and some length of stem otherwise.2

Like circuits, Benenson automata are best studied as a non-uniform computing model. But
while the computational power of circuits is well characterized, the computational power of
Benenson automata has not been studied. For example, while it was shown [4] how a single
Benenson automaton can compute a conjunction of inputs (and negated inputs), it was not
clear how a single Benenson automaton can compute a disjunction of conjunctions. While
[5] and [3] show how finite automata can be simulated by a similar scheme,3 a different
input method is used. Here, we show that a Benenson automaton can simulate an arbitrary
circuit, implying that it is capable of doing arbitrary non-uniform computation.

Lastly, we study the cost of implementing more complex computations (e.g. more com-
plex diagnostic tests) using Benenson automata. While increasing the length of the state
molecule is relatively easy and incurs approximately linear cost, increasing the size of the
sticky ends or the range at which the restriction enzyme cuts requires discovering or creat-
ing new enzymes. Enzymes with very large cutting ranges that leave large sticky ends may
not exist in nature, and while some success has been achieved in creating new restriction
enzymes [6,7], engineering new restriction enzymes suitable for Benenson automata will
require further technological advances.

1 We will consider non-deterministic computation in which more than one cutting rule molecule can attach and
cut. However, unlike[1] we will not assign probabilities to the various reactions and the output.

2 Even with a stem remaining, the loop may still open at a certain rate (the “stem” must be long enough to keep
the loop locked closed—see[4]). Nevertheless, our constructions can be modified to assure a longer remaining
stem on a 0 output at the cost of using a few additional unique sticky ends (see Discussion).

3 In contrast to[4], [1,3,5] treat the state molecule as an input string for a uniform computation, while the set
of rule molecules is always the same and specifies the finite state machine computation to be performed. It is
interesting to note the difference in the computational power of these two approaches. To implement a FSM with
K symbols andN states, a type IIS restriction enzyme with cutting rangeN and sticky end size O(logKN) is
sufficient and probably necessary.



D. Soloveichik, E. Winfree / Theoretical Computer Science 344 (2005) 279–297 283

Let us consider a family of boolean functions{fn}, wheren = 1,2, . . .andfn : {0,1}n →
{0,1}. We show that any{fn} can be computed by a family of Benenson automata such
that the size of the sticky ends grows only logarithmically withn and the range of enzyme
cutting stays constant. (This is analogous to noting that any{fn} can be computed by a
family of circuits using constant fan-in/fan-out, but it is non-trivial to prove.) If we restrict
the length of the state molecule to bepoly(n), then the families of functions computable by
these Benenson automata are exactly those computable by O(log(n)) depth circuits. These
results are asymptotically optimal, since sticky end lengths must grow as logn in order to
read all the input bits. We will also show that allowing the sticky end size to grow faster than
O(logn)does not increase computational power, and that allowing logarithmic cutting range
cannot increase it significantly. Finally, we will define non-deterministic computation and
prove that function families cannot be computed more efficiently using non-deterministic
Benenson automata than deterministic ones.

Independent of the relevance of our formalization to biological computation, Benenson
automata capture a model of string cutting with input-dependent cutting rules, and may be
of interest as such.

2. Formalization of Benenson automata

We consider Benenson automata over a fixed alphabet�. For biological plausibility, one
may want to consider� = {A, T ,C,G}. However, our constructions assume only that
|�| �3. If so desired, all our results can be adapted to a binary alphabet by utilizing two bits
to represent a single symbol, which entails changes in the constants used in the theorems.

Let N be the set of non-negative integers{0,1, . . .}. For any string� ∈ �∗, |�| is the
length of�. Forj ∈ N such thatj� |�|, we will use the notation�[j ] to indicate the string
that is left over after the firstj symbols of� are stripped off.

A Benenson automaton is parameterized by four numbers. Parametern is the number of
inputs that the automaton is sensitive to. Further, parameterScorresponds to the sticky end
size,D to the maximum cutting range of the restriction enzyme (see Fig.1(a)), andL to the
length of the computational portion of the state molecule. A particular Benenson automaton
is defined by specifying a state string� and a selection of input-dependent cutting rulesR
as follows.

Definition 2.1. A Benenson automatonis a tuplet(S,D,L,�, n, �,R)wheren, S,D,L ∈
N,� is a finite alphabet,�∈�L is a state string andR⊆{0, . . . , n}×{0,1}×�S×{1, . . . , D}
is a rule set using sticky ends of lengthS and maximum cutting distanceD. Each rule
(i, b,�, d) specifies an inputi, a binary valueb, a sticky end�, and a cutting distanced.

Interpreted as a DNA state molecule,�[j ] represents the remaining portion of the
molecule afterj initial bases have been cut off. The firstS symbols of�[j ] represent the
single stranded sticky end overhang. This revealed sticky end� and the value of an input
bit xi determine where the next cut will be made by the application of some cutting rule
(i, b,�, d) which is applicable ifxi = b and cuts at a distanced.
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Definition 2.2. Given a Benenson automaton(S,D,L,�, n, �,R), for a binary inputx =
x1x2 . . . xn, a rule(i, b,�, d) ∈ R appliesto �[j ], wherej ∈ N s.t. |�[j ]| �S + d, if
xi = b and� is the initialSsymbol portion of�[j ]. We write�[j ] →x �[j + d] iff there
exists a rule(i, b,�, d) ∈ R that applies to�[j ]. Further,→∗

x is the reflexive transitive
closure of→x .

Our definition of Benenson automata (as well as the biochemical implementation) allows
for conflicting cutting rules. For example, if the rule set contains rules(1,0,�,4) and
(2,1,�,6), then either four or six bases may be cut off if the sticky end� is revealed
andx1 = 0, x2 = 1. An important class of Benenson automata are those in which it is
impossible for conflicting cutting rules to apply simultaneously.

Definition 2.3. A Benenson automaton(S,D,L,�, n, �,R) is said to bedeterministic
if ∀x ∈ {0,1}n andj ∈ N s.t. � →∗

x �[j ], there exists at most onej ′ ∈ N such that
�[j ] →x �[j ′].

While in computer science non-determinism often seems to increase computational
power, we will see this is not the case with Benenson automata. On the other hand, imple-
menting deterministic Benenson automata may be advantageous because (assuming error-
free operation) each state molecule is cut up in the same way and thus there is no need for
a combinatorially large number of state molecules.

Cutting the state string far enough indicates a 1 output. We will think of Benenson
automata computing boolean functions as follows:

Definition 2.4. For p ∈ N, we say that a Benenson automaton(S,D,L, �, n, �,R)

non-deterministically computesa boolean functionf : {0,1}n → {0,1} at position pif
∀x ∈ {0,1}n, f (x) = 1 ⇔ (∃j ∈ N, p�j� |�| s.t.� →∗

x �[j ]). We will say simply that
the Benenson automatonnon-deterministically computes fif such ap exists.

Definition 2.5. Forp ∈ N, we say that a Benenson automaton(S,D,L, �, n, �,R) com-
putesa boolean functionf : {0,1}n → {0,1} at position pif the automaton is deterministic
and∀x ∈ {0,1}n, f (x) = 1 ⇔ (∃j ∈ N, p�j� |�| s.t.� →∗

x �[j ]). We will say simply
that the Benenson automatoncomputes fif such ap exists.

Other reasonable output conventions have the same computational power. For example,
the following lemma shows that Benenson automata cutting to exactlyp symbols to output
a 1 and never cutting to exactlyp symbols to indicate a 0, can be easily modified to output
according to our convention.

Lemma 2.1. If for a deterministic Benenson automaton(S,D,L,�, n, �,R) and
f : {0,1}n → {0,1}, ∃p ∈ N, p�L s.t. ∀x ∈ {0,1}n, � →∗

x �[p] ⇔ f (x) = 1,
then there is a Benenson automaton(S,D, p + S,�, n, �′,R) that computes f.

An identical lemma also holds for non-deterministic computation. The lemma is trivially
proven by taking�′ to be the firstp+S symbols of�. All our constructions of Section4 will
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produce Benenson automata requiring Lemma2.1 to satisfy our definition of computing
boolean functions (Definition 2.5).

Note that interpreted as a DNA state molecule, the length of the remaining state string
minus S represents the remaining double-stranded stem holding the output loop closed.
Thus, as mentioned in the Introduction, automata from our constructions (like any automata
produced by the above lemma) leave no stem only on a 1 output, allowing the loop to open.

In a biochemical implementation, it may seem that in order to change the input (say from
being all zeros to all ones) it may be necessary to activate or inactivate a rule molecule for
every cutting rule inR. However, for certain Benenson automata much smaller changes
need be made. Consider the example of an automaton whose rule set contains the rules
(1,0,�, d) and(1,1,�, d). This pair of rules is really a single input-independent rule to
cutdbases if sticky end� is found no matter what the input is; thus, the cutting rule molecule
for it can be always active in solution. The following definition quantifies the maximum
“amount of effort” needed the change the input for a given Benenson automaton.

Definition 2.6. For s ∈ N, a Benenson automaton(S,D,L,�, n, �,R) is said to bes-
encodedif for every input biti, 1� i�n, there are at mosts sticky ends� ∈ �S such that
∃(i, b,�, d) ∈ R but (i,1 − b,�, d) /∈ R.

An s-encoded automaton has at mosts sticky ends “reading” any given input bit. In
order to change the input, in a biochemical implementation of a deterministics-encoded
Benenson automaton, it is enough to activate or inactivate at mostspairs of rule molecules
per changed bit.

3. Characterizing the computational power of Benenson automata

In Section4 we show that to compute function families using Benenson automata, only
logarithmic scaling of the restriction enzyme sticky end size, and no scaling of the maximum
cutting distance is needed. This result holds no matter what the complexity of the function
family is. Further, if the family of functions is computable by log-depth circuits,4 then a
state string of only polynomial size is required. All of our constructions use deterministic
Benenson automata.

Theorem 3.1.
(a) Any functionf : {0,1}n → {0,1} can be computed by a Benenson automaton with

sticky end sizeS = O(logn) and maximum cutting distanceD = O(1).
(b) Families of functions computable byO(logn) depth circuits can be computed by Benen-

son automata with sticky end sizeS = O(logn), maximum cutting distanceD = O(1),
and state string lengthL = poly(n).

The constants implicit in both statements are rather small. (In this and in the following
discussions we assume that the alphabet size|�| is a constant.) Note that the sticky end

4 For the purposes of this paper, circuits are feed-forward and consist of AND, OR, and NOT gates with fan-in
bounded by 2. For an introduction to circuit complexity see for example[8].
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size cannot be smaller than O(logn) since there must be at least a different sticky end for
each input bit (otherwise the input is not completely “read”). Thus, in computing arbitrary
boolean functions, we cannot do better thanS = O(logn) andD = O(1).

Further, in Section5 we prove that our computation of families of functions computable
by log-depth circuits is optimal, and neither allowing non-determinism nor larger sticky
ends adds computational power:

Theorem 3.2. Families of functions computable, possibly non-deterministically, by Benen-
son automata withD = O(1), L = poly(n) can be computed byO(logn)-depth circuits.

Corollary 3.1. Benenson automata withS = O(logn), D = O(1), L = poly(n) can
compute the same class of families of functions asO(logn)-depth circuits.

So if we consider only Benenson automata withS = O(logn), D = O(1), L = poly(n)
efficient, then Benenson automata can compute a family of non-uniform functions efficiently
if and only if it can be computed by a circuit of logarithmic depth. In Section5, we will
also show that relaxing this notion of efficiency to include logarithmic cutting range does
not increase the computational power significantly.

4. Simulating branching programs and circuits

Benenson automata are closely related to the computational model known as branching
programs. (For a review of branching programs see [12].) In the next section we show
how arbitrary branching programs can be simulated. In the following two sections, we
show how restricted classes of branching programs (fixed-width and permutation branching
programs) can be simulated by Benenson automata withS = O(logn)andD = O(1). Since
fixed-width permutation branching programs are still powerful enough to compute arbitrary
boolean functions (Section 4.4), Theorem 3.1(a) follows. Further, in Section 4.4 we will also
see that fixed-width permutation branching programs ofpoly(n) size can simulate O(logn)
depth circuits, implying Theorem 3.1(b).

4.1. General branching programs

A branching program is a directed acyclic graph with three types of nodes: variable, accept
and reject (e.g. Fig. 2(a)). The variable nodes are labeled with an input variablexi (1� i�n)
and have two outgoing edges, one labeled 0 and the other 1, that lead to other (variable,
accept or reject) nodes. The accept and reject nodes have no outgoing edges. One variable
node with no incoming edges is designated the start node. The process of computation
consists of starting at the start node and at every nodexi , following the outgoing edge
whose label matches the value of theith bit of the input. If an accept node is reached, we
say that the branching program accepts the inputx. Otherwise, a reject node is reached, and
we say that the branching program rejects the inputx. The functionf : {0,1}n → {0,1}
computed by a branching program isf (x) = 1 if x is accepted and 0 otherwise.
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Fig. 2. (a) An example of a general branching program of 9 nodes over 4 inputs and (b) the corresponding Benenson
automaton. (c) An example of a width 3 branching program of 9 nodes over 4 inputs and (d) the corresponding
Benenson automaton. Note that some nodes are inaccessible but these will be a small fraction for large programs.
In both examples,�1 · · ·�9 →∗

x �9 iff the branching program acceptsx.

Because a branching program is a directed acyclic graph, we can index the nodes in such
a way that we can never go from a node with a higher index to a node with a lower one (as
shown in Fig.2(a)). We can ensure that the first node is the start node and that there is only
one accept node (convert all other accept nodes into variable nodes with all outgoing edges
to this accept node). LetH be the total number of nodes in the given branching program.
To each node with indexq ∈ {1, . . . , H } we associate a unique string�q ∈ �∗ of length
S = �log|�|(H)�. Let the state string� be the concatenation of these segments in order:
�1 . . . �H . Thus, the sizeL of the state string isHS. For every variable nodeq labeled
xi , definevar(q) = i. Further, for every variable nodeq, goto0(q) ∈ {q + 1, . . . , H }
is the node targeted by the 0 outgoing edge andgoto1(q) ∈ {q + 1, . . . , H } is the node
targeted by the 1 outgoing edge ofq. Using this notation, the rule set of our automaton
consists of the following cutting rules. For every variable nodeq, there are two rules:
(var(q),0, �q, (goto0(q) − q)S) and(var(q),1, �q, (goto1(q) − q)S). Depending on the
branching program, the cutting distance may have to be as large as(H−1)S if goto0(1) = H

or goto1(1) = H .
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By construction, for any remaining portion of the state string�q · · · �q ′ · · · �H , we have
that �q · · · �q ′ · · · �H →x �q ′ · · · �H iff the branching program goes to nodeq ′ from q
on inputx in one step. This implies that�1 · · · �q · · · �H →∗

x �q · · · �H iff the branch-
ing program eventually goes from the start node to nodeq on inputx. Thus, this Benen-
son automaton cuts to the beginning of the segment corresponding to the accept node
iff the branching program accepts the inputx. Thus, employing Lemma2.1 (i.e. shortening
the state string) we have a Benenson automaton computing the functionf computed
by the branching program. As there is exactly one outgoing edge from any variable node
for each value of the read input bit, it follows that the resultant automaton is deterministic.
See Fig. 2(a,b) for an example of a branching program and the corresponding Benenson
automaton. Thus we have the following lemma:

Lemma 4.1. For any functionf : {0,1}n → {0,1} computed by a branching program
of H nodes and any alphabet� s.t. |�| �2, there is a deterministic Benenson automaton
(S,D,L,�, n, �,R) with sticky end sizeS = �log|�| (H)�, maximum cutting distance
D = (H − 1)S, and state string lengthL�HS computing f.

Note that all three complexity parameters (S, D, andL) of Benenson automata needed to
simulate general branching programs using the above construction scale with the size of the
branching program. Thus, for families of functions for which the size of branching programs
computing them increases very fast withn, new restriction enzymes must be developed that
scale similarly. Consequently, this is not enough to prove Theorem 3.1(a).

4.2. Fixed-width branching programs

In this section, we demonstrate a sufficiently powerful subclass of branching programs
whose simulation is possible by Benenson automata such that only the sizeL of the state
string scales with the size of the branching program, whileS = O(logn) andD = O(1).

In the general case discussed in Section4.1, our cutting range had to be large because
we had no restriction on the connectivity of the branching program and may have needed
to jump far. Further, we used a different sticky end for each node because there may be
many different “connectivity patterns.” Restricting the connectivity of a branching program
in a particular way permits optimizing the construction to significantly decreaseSandD.
In fact, both will loose their dependence on the size of the branching program. In the final
construction, the sticky end sizeSwill depend only on the size of the inputn and the cutting
range will be a constant.

A width J, length K branching program consists ofK layers of J nodes each (e.g.
Fig. 2(c)). The total number of nodes isH = KJ . We will think of J as a constant since
for our purposesJ �5 will be enough. Nodes in each layer have outgoing edges only to the
next layer, and every node in the last layer is either accepting or rejecting. We can ensure
that the first node in the first layer is the start node and that the last layer has a single accept
node. (Otherwise, the branching program can be trivially modified.) It turns out that width 5
branching programs are sufficiently powerful to simulate any circuit (Section 4.4). Further,
the results of Section 5 ensure that we have not restricted our model of computation too
much; more general Benenson automata cannot compute more efficiently.
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Given a widthJ branching programs, we index nodes consecutively from each layer: the
jth node in layerk obtains indexq = (k−1)J + j . We use the same cutting rules as before,
and construct the state string identically to the previous section, but with the following
difference. Instead of using a unique segment for each node in the branching program as
we did in the previous section, we let�q = �q ′ iff var(q) = var(q ′), goto0(q) − q =
goto0(q

′)−q ′ andgoto1(q)−q = goto1(q
′)−q ′. In other words, we allow the segments to

be the same if their cutting rules have the same behavior. This does not change the behavior
of the automaton but allows us to use fewer unique segments, thereby decreasingS. For a
width J branching program,goto0(q) − q andgoto1(q) − q range from 1 to 2J − 1. So
we need no more thann(2J − 1)2 different segments, which implies that at most we need
S = �log�(n(2J − 1)2)�. (The segments corresponding to the accept and reject nodes can
be anything as long as we cannot go from a reject node to the accept node. We can choose
a segment such thatgoto0(q) − q,goto1(q) − q�J .) Note that the resultant automaton is
(2J − 1)2-encoded asgoto0(q)− q andgoto1(q)− q range from 1 to 2J − 1. Further, the
maximum cutting distance needs to be at mostD = (2J − 1)S since in the worst case we
need to go from the first node of a layer to the last node of the next layer. See Fig.2(c,d)
for an example of how a fixed-width branching program can be converted to a Benenson
automaton.

As a result of the above optimizations for fixed-width branching programs, the sticky
end sizeS and the maximum cutting distanceD loose their dependence on the length of
the branching programK. Assuming the widthJ is fixed, this means that the choice of the
restriction enzyme is independent of the size of the branching program and is dependent
only on the number of input bitsn.

Lemma 4.2. For any functionf : {0,1}n → {0,1} computed by a branching program
of width J and length K, and any alphabet� s.t. |�| �2, there is a(2J − 1)2-encoded
deterministic Benenson automaton(S,D,L,�, n, �,R) that uses sticky end size
S = �log�(n(2J − 1)2)�, maximum cutting distanceD = (2J − 1)S, and state string
lengthL�KJS computing f.

The constructions described above rely on being able to skip entire segments in a single
cut. It seems that the cutting range must be at least logarithmic inn, since the size of
the segments is logarithmic inn to be able to read all the input variables. However, in
the following we describe the construction in which the maximum cutting distanceD is
dependent only on the widthJ and no longer onn, and is thus shorter than the segments.
As before, we will still have that� = �1 · · · �q · · · �H →∗

x �q · · · �H iff the branching
program eventually goes from the start node to nodeqon inputx. However, while previously
following a single arrow on the branching program corresponded to the application of a
single cutting rule, now it will involve the application of many. We will separate the cutting
rules into two logical types:segmentcutting rules andskipcutting rules. If previously the
applicable cutting rule removed(goto0(q) − q) or (goto1(q) − q) entire segments, now
the corresponding segment cutting rule only removes(goto0(q) − q) or (goto1(q) − q)

symbols from the beginning of the current segment�q . How can the cutting ofd symbols
from the beginning of a segment result in the eventual cutting ofd entire segments? This is
accomplished by the skip cutting rules as follows (see also Fig.3).
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Fig. 3. An example of a segment cutting rule application and the subsequent application of skip cutting rules. In
this case,D = 5, k = 2 and the size of the segments ism = D · k + 1 = 11. The sticky end size isS = 8; the
black horizontal lines above the state string show the sticky end in each step. The grayed squares comprise�q ,
�q+1, and�q+2 that, together with a bit of input, determine which segment cutting rule is applicable. The empty
white squares comprise�.

A new symbol� ∈ � marks the beginning of each segment, while the rest of the segment
uses symbols in� − {�}. A skip cutting rule is always applicable if the first symbol of
the revealed sticky end is not�, while segment cutting rules are only applicable if the first
symbol of the revealed sticky end is�. All skip cutting rules cut exactlyD symbols. We use
segments of lengthm = D · k + 1 for some integerk�1. After the application of some
segment cutting rule removesd initial symbols of the state string, exactlyd · k applications
of skip cutting rules follow because afterd · k ·D+ d = d ·m symbols have been removed,



D. Soloveichik, E. Winfree / Theoretical Computer Science 344 (2005) 279–297 291

it follows thatd entire segments (each of lengthm) have been cut off and a new segment
cutting rule is applicable. No segment cutting rule is applicable before then since this is the
first time the first symbol of the revealed sticky end is�.

Formally, we use segments of the form�q = ��q� where�q, � ∈ (� − {�})∗ and� is
an arbitrary string such that

∣
∣�q

∣
∣ = D · k + 1 for some integerk�1. The strings�q are

chosen such that�q = �q ′ iff var(q) = var(q ′), goto0(q) − q = goto0(q
′) − q ′ and

goto1(q) − q = goto1(q
′) − q ′. For each variable nodeq, the segment cutting rules are:

(var(q),0, ��q, (goto0(q)−q)) and(var(q),1, ��q, (goto1(q)−q)). Since we have at most
n(2J − 1)2 unique�q ’s and we also need to read the�, we need the sticky end to be of size
S = 1 + �log|�|−1 (n(2J − 1)2)�. In the worst case, as before, we havegoto0/1(q) − q =
2J − 1 and so the maximum cutting distance needs to beD = 2J − 1 so that we can skip
2J − 1 segments. Since the skip cutting rules should be independent of the input, for every
� ∈ �S s.t. the first symbol of� is not�, we can use the following two rules:(1,0,�,D)

and(1,1,�,D). Note that since for both segment and skip cutting rules, there is at most one
cutting rule applicable at any time, and because a segment cutting rule cannot be applicable
at the same time as a skip cutting rule, it follows that our construction yields a deterministic
Benenson automaton.

With the above trick (of course after applying Lemma2.1), we have the following lemma
for fixed-width branching programs:

Lemma 4.3. For any functionf : {0,1}n → {0,1} computed by a branching program
of width J and length K, and any alphabet� s.t. |�| �3, there is a(2J − 1)2-encoded
deterministic Benenson automaton(S,D,L,�, n, �,R) that uses sticky end size
S = 1 + �log|�|−1 (n(2J − 1)2)�, maximum cutting distanceD = 2J − 1, and state
string lengthL�KJS computing f.

Lemma4.3 together with Barrington’s theorem (Lemma 4.5) is enough to prove both
parts of Theorem 3.1. However, we first optimize our construction even further to obtain
better constants.

4.3. Permutation branching programs

We can obtain better constants if we restrict the branching program even more. Again, in
the next section we will see that even with this restriction, branching programs can simulate
circuits.

First, we need a notation for the context of layered branching programs. For nodej
in layer k let goto0(k, j) = j ′ if the j ′th node in layerk + 1 is targeted by the 0
outgoing edge of this node;goto1(k, j) is defined analogously. A widthJ permutation
branching program is a widthJ branching program such that for all layersk, the se-
quencesgoto0(k,1), . . . ,goto0(k, J ) andgoto1(k,1), . . . ,goto1(k, J ) are permutations of
1, . . . , J . Further, there is exactly one accept node in the last layer (this can no longer be
trivially assumed). It turns out that width 5 permutation branching programs are still suf-
ficiently powerful to simulate any circuit (Section 4.4). In Section 5, we will confirm that
we have not restricted our model of computation too much: efficient Benenson automata
cannot simulate anything more powerful than permutation branching programs.
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For permutation branching programs we can use fewer unique sequences for the�q ’s
than for general fixed width branching programs. It is easy to see that for every permutation
branching program, there is another permutation branching program of the same width and
length that accepts the same inputs as the original program but for all layersk, goto0(k, ·) is
the identity permutation (i.e.goto0(k, j) = j ). In this case, sincegoto0(q)−q is alwaysJ, we
need at mostn(2J−1)unique�q ’s. Thus, sticky ends of sizeS = 1+�log|�|−1 (n(2J − 1))�
are sufficient and our automaton is(2J − 1)-encoded. This leads to the following lemma:

Lemma 4.4. For any functionf : {0,1}n → {0,1} computed by a permutation branching
program of width J and length K, and any alphabet� s.t. |�| �3, there is a(2J − 1)-
encoded deterministic Benenson automaton(S,D,L,�, n, �,R) with sticky end sizeS =
1+�log|�|−1 (n(2J − 1))�, maximum cutting distanceD = 2J −1,and state string length
L�KJS computing f.

4.4. Simulating Circuits

While it may seem that fixed-width permutation branching programs are a very weak
model of computation, it turns out that to simulate circuits, width 5 permutation branching
programs is all we need:

Lemma 4.5(Barrington[2] ). A functionf : {0,1}n → {0,1} computed by a circuit of
depth C can be computed by a length4C width5 permutation branching program.

Corollary 4.1 (of Lemmas4.4and4.5). For any functionf : {0,1}n → {0,1} computed
by a circuit of depth C, and any alphabet� s.t. |�| �3, there is a 9-encoded deterministic
Benenson automaton(S,D,L,�, n, �,R) with sticky end sizeS = 1 + �log|�|−1 (9n)�,
maximum cutting distanceD = 9, and state string lengthL = 4C5S computing f.

This provides an alternative proof of Theorem 3.1 and implies, for instance, that a Be-
nenson automaton using the restriction enzymeFokI can do arbitrary 3-bit computation.
Any increase in the sticky end size, exponentially increases the number of inputs that can
be handled. If an enzyme is discovered that cuts 9 bases away likeFokI but leaves size 7
sticky ends, then it can do all 81-bit computation.

Letting C = O(logn), this proves Theorem 3.1(b). Theorem 3.1(a), of course, fol-
lows trivially since the complexity of the circuit (depthC) enters only in the length of the
state string.

4.5. Achieving 1-encoded automata

If it is essential that the Benenson automaton be 1-encoded, the scheme from Section4.3
can be adapted at the expense of slightly increasing the maximum cutting rangeD and the
length of the state stringL. The modification actually decreases the size of the sticky ends.

We provide a sketch of the construction; the details are carried over from the previous
sections. The main idea is to use a pair of segments�q = ��q and�′

q = ��′
q , where�q,

�′
q ∈ (�−{�})∗, for each nodeq of the permutation branching program, rather than a single
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reading segment
skip segments

layer  k layer k+1 

layer k layer k+1 

0
1

(a)

(b)

Fig. 4. Illustration of the construction achieving 1-encoded automata. (a) The portion of the branching program
being simulated. In this case the width of the branching program isJ = 3. (b) The relevant portion of the Benenson
automaton. Note that each skip illustrated by the dashed lines consists of many cuts like those illustrated in Fig.3.

segment as before (see Fig.4). The first segment of the pair�q (thereading segment) reads
the corresponding variable and skips either 2J segments ifxi = 0 or goes to the next
segment ifxi = 1. Thus, the segment cutting rules for this segment are:(i,0, ��q,2J )
and (i,1, ��q,1). Segment�′

q (the skip segment) encodes an input-independent skip of
2(goto1(q) − q) − 1 segments to go to the correct reading segment. Thus, for the skip
segment we can use the following segment cutting rules:(1,0, ��′

q,2(goto1(q) − q) − 1)
and(1,1, ��′

q,2(goto1(q) − q) − 1). We need at mostn + 2J − 1 unique segment types:
n to read all the variables, and 2J − 1 to be able to skip 2(goto1(q)− q)− 1 segments for
all the values of(goto1(q)− q) which ranges from 1 to 2J − 1. The maximum number of
segments to skip is 2(2J −1)−1 = 4J −3. Note that there is at most one reading segment
per input bit and thus the construction is 1-encoded.

Lemma 4.6. For any functionf : {0,1}n → {0,1} computed by a permutation branching
program of width J and length K, and any alphabet� s.t. |�| �3, there is 1-encoded deter-
ministic Benenson automaton(S,D,L,�, n, �,R)withS = 1+�log|�|−1 (n+ 2J − 1)�,
D = 4J − 3, andL�2KJS computing f.

This implies, for instance, that 1-encoded Benenson automata using restriction enzyme
FokI can simulate any width 3 permutation branching program over 22 inputs.

Corollary 4.2 (of Lemmas4.6and4.5). For any functionf : {0,1}n → {0,1} computed
by a circuit of depth C, and any alphabet� s.t. |�| �3, there is a1-encoded deterministic
Benenson automaton(S,D,L,�, n, �,R) with S = 1 + �log|�|−1 (n+ 9)�, D = 17,and
L = 4C10S computing f.
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This implies, for example, that if a DNA restriction enzyme can be found that leaves
sticky ends of size 4 likeFokI but cuts 17 bases away, then this enzyme can do all 18 bit
computation with 1-encoded Benenson automata.

5. Shallow circuits to simulate Benenson automata

We will now show that our constructions from the previous section are asymptotically
optimal.

Lemma 5.1. A functionf : {0,1}n → {0,1} computed, possibly non-deterministically, by
a Benenson automaton(S,D,L,�, n, �,R)can be computed by aO(log(L/D) logD+D)

depth, O(D4DL) size circuit.

To see that this Lemma implies Theorem3.2, takeD = O(1), S = O(logn), andL =
poly(n). Further, this Lemma implies that allowing non-determinism does not increase the
computational power of Benenson automata. Likewise, note that sticky end sizeSdoes not
affect the complexity of the circuit simulating a Benenson automaton. This implies that
increasing the sticky end size to be larger than O(logn) does not increase computational
power.

Finally, Lemma 5.1 implies that Benenson automata using maximum cutting distance
D = O(logn), and state string lengthL = poly(n) cannot be much more powerful than
Benenson automata withD = O(1), andL = poly(n). Specifically,∀� > 0, functions
computable by Benenson automata withD = O(logn), andL = poly(n) are computable
by O(log1+� n) depth,poly(n) size circuits.

Let us be given a Benenson automaton(S,D,L,�, n, �,R) computing, possibly non-
deterministically, a boolean functionf at positionp. Observe that in order to check if, for
a given input, the state string can be cut to or beyondp, it is enough to check if it can be
cut top or the followingD symbols. The idea of our construction is that we split the state
string into segments of lengthD and compute for all cut locations in every segment where
the possible cuts in the next segment can be (for the given input). Then this information
can be composed using a binary tree of matrix multiplications to reveal all possible cuts in
theD symbols followingp starting with the full state string. Making the segments shorter
thanD allows the possibility that a cut entirely bypasses a segment thereby fouling the
composition, and making them longer thanD makes the construction less efficient (i.e.
results in a deeper circuit). This proof is similar to the argument that poly-length fixed-
width branching programs can be simulated by log-depth circuits (e.g. [2]), in which the
construction computes a binary tree of compositions of permutations rather than matrix
multiplications.

For convenience let us assumep is divisible byD (sayQ = p/D) and that|�| �p+D.
For q andq ′ ∈ N, q < q ′ �Q, define aD × D binary matrixTq,q ′(x) in which thehth
bit (0 indexed) of thejth row (0 indexed) is 1 iff�[qD + j ] →∗

x �[q ′D + h]. Observe
thatTq,q ′(x) × Tq ′,q ′′(x) = Tq,q ′′(x) where in the matrix multiplication+ is logical OR
and · is logical AND. Therefore,f (x) = 1 iff there is at least one 1 in the 0th row of
T1,Q(x) = T1,2(x)× T2,3(x)× · · · × TQ−1,Q(x). If p is not divisible byD or |�| < p+D,
we can let the first or last of these matrices be smaller as necessary.
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Fig. 5. Circuit outline for simulating a Benenson automaton. TheT lines represent a bundle of at mostD2 wires.
Input lines represent a bundle of at most 2D wires (a different subset for each gadget, possibly overlapping).

We can create a shallow binary tree computing the productT1,Q. For clarity of exposition,
let us assume thatQ−1 is a power of 2. Our circuit consists of gadgetsAq (1�q�Q−1),
gadgetsB and gadgetC (see Fig.5). The input and output lines of gadgetsB represent a
matrix Tq,q ′(x) for a range of segmentsq to q ′ as shown in Fig. 5. To compute the initial
series of matrices, each gadgetAq needs only to know at most 2D bits of inputx on which
Tq,q+1(x) may depend (a segment of lengthD can read at mostD input bits). Each gadget
Aq can be a selector circuit that uses the relevant input bits to select one of 22D possible
hardwired outputs (different for eachAq ). These gadgetsAq have depth O(D) and size
O(D24D). The output of gadgetB is the product of its first input matrix by the second
input matrix, where+ is logical OR and· is logical AND. GadgetB can be made of depth
O(logD) and size O(D3). GadgetC outputs 1 iff there is at least one 1 in the 0th row of its
input matrix.
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6. Discussion

This work generalizes the non-uniform model of computation based on the work of
Benenson et al.[4] and characterizes its computational power. We considered restriction
enzymes with variable reach and sticky end size, and studied how the complexity of the
possible computation scales with these parameters. In particular, we showed that Benenson
automata can simulate arbitrary circuits and that polynomial length Benenson automata
with constant cutting range are equivalent to fixed-width branching programs and therefore
equivalent to log-depth circuits. We achieve these asymptotic results with good constants
suggesting that the insights and constructions developed here may have applications.

There may be ways to reduce the constants in our results even further. Although the fixed-
width permutation branching programs produced via Barrington’s theorem have the same
variable read by every node in a layer, this fact is not used in our constructions. Exploiting
it may achieve smaller sticky end size or maximum cutting distance.

As mentioned in the Introduction, in a biochemical implementation of our constructions
the last possible cut in the case thatf (x) = 0 may have to be sufficiently far away from
the output loop to prevent its erroneous opening. By using a few extra unique sticky ends
we can achieve this with our constructions. For example, by adding one more unique sticky
end corresponding to the reject states and making sure the accept state is last, we can ensure
that in the constructions simulating general branching programs and fixed-width branching
programs the last possible cut in the casef (x) = 0 is at least the length of a segment away
(�S,D) from the last cut in the casef (x) = 1.

Some Benenson automata may pose practical problems for existing or future restriction
enzymes not discussed in this paper. For example, a cutting rule withd = 1 would require a
single base adjacent to a nick to be cleaved off each strand, which may not be biochemically
plausible for certain restriction enzymes (a ligation enzyme may have to be used). Such
issues must be considered carefully for an experimental implementation.

The major problem with directly implementing our construction is the potential of an error
during the attachment of the rule molecule and during cuts. While a practical implementation
of a Benenson automaton [4] has to work reliably despite high error rates, our formalization
does not take the possibility of erroneous cutting into account. Further work is needed
to formalize and characterize effective error-robust computation with Benenson automata.
Similarly, while it is the easiest study of the binary model in which a reaction either occurs
or not, a model of analog concentration comparisons may better match some types of tests
implemented by Benenson et al.
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