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Abstract

Statistical learning theory chiefly studies restricted
hypothesis classes, particularly those with finite
Vapnik-Chervonenkis (VC) dimension. The fun-
damental quantity of interest is the sample com-
plexity: the number of samples required to learn to
a specified level of accuracy. Here we consider
learning over the set of all computable labeling
functions. Since the VC-dimension is infinite and
a priori (uniform) bounds on the number of sam-
ples are impossible, we let the learning algorithm
decide when it has seen sufficient samples to have
learned. We first show that learning in this setting
is indeed possible, and develop a learning algo-
rithm. We then show, however, that bounding sam-
ple complexity independently of the distribution is
impossible. Notably, this impossibility is entirely
due to the requirement that the learning algorithm
be computable, and not due to the statistical nature
of the problem.

1 Introduction

Suppose we are trying to learn a difficult classification prob
lem: for example determining whether the given image con-

tains a human face, or whether the MRI image shows a ma-

Accepting that much of the time the complexity of the
model cannot be a priori bounded, Structural Risk Minimiza-
tion [Vap98] explicitly considers a hierarchy of increaglin
complex models. An alternative approach, and one we fol-
low in this paper, is simply to consider a single learning
model that includes all possible classification methods.

We consider the unrestricted learning model consisting
of all computable classifiers. Since the VC-dimension is
clearly infinite, there are no uniform bounds (independent
of the distribution and the target concept) on the number of
samples needed to learn accurately [BEHW89]. Yet we still
want to guarantee a desired level of accuracy. Rather than
deciding on the number of samples a priori, it is natural to
allow the learning algorithm to decide when it has seen suffi-
ciently many labeled samples based on the training samples
seen up to now and their labels. Since the above learning
model includes any practical classification scheme, we term
it universal (PAC-) learning.

We first show that there is a computable learning al-
gorithm in our universal setting. Then, in order to obtain
bounds on the number of training samples that would be
needed, we consider measuring sample complexity of the
learning algorithm as a function of the unknown correct la-
beling function (i.e. target concept). Although the cotrec
labeling is unknown, this sample complexity measure could
be used to compare learning algorithms speculativelyh&f t
target labeling were such and such, learning algorithne-
quires fewer samples than learning algoritih By asking
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lignant tumor, etc. We may first try to train a simple model What is the largest sample size needed assuming the target
such as a small neural network. If that fails, we may move labeling funct|on_|s in a certain class, we could compare the
on to other, potentially more complex, methods of classifi- S&MPple complexity of the universal learner to a learner over
cation such as support vector machines with different ker- the restricted class (e.g. with finite VC-dimension).

nels, techniques to apply certain transformations to the da However, we prove that it is impossible to bound the
first, etc. Conventional statistical learning theory apgsn ~ Sample complexity of angomputablainiversal learning al-

to bound the number of samples needed to learn to a specd0rithm, even as a function of the target concept. Depending
ified level of accuracy for each of the above models (e.g. O the distribution, any such bound will be exceeded with ar-
neural networks, support vector machines). Specifically, i Pitrarily high probability. The impossibility of a distrittion-
enough to bound the VC-dimension of the learning model to independent bound is entirely due to the computability re-
determine the number of samples to se [VE71. BEHW89]. quirement. Indeed we show there is an uncomputable learn-
However, if we allow ourselves to change the model, then iNg procedure for which we bound the number of samples
the VC-dimension of the overall learning algorithm is not fi- duéried as a function of the unknown target concept, inde-

nite, and much of statistical learning theory does not diyec pendently of the distribution. ) )
apply. Our results imply that computable learning algorithms

in the universal setting must “waste samples” in the sense
of requiring more samples than is necessary for statistical

invaluable support. reasons alone.
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2 Relation to Previous Work ple distributionD over X. The learning algorithm chooses
] ) ) ) o ) ahypothesig € H based on iid samples drawn frofhand

There is comparatively little work in statistical learnitt®-  |apeled according to the target conceptSince we cannot
ory on learning arbitrary computable classifiers compaved t Kope to distinguish between a hypothesis that is always cor-
the volume of research on learning in more restricted set-rect and one that is correct most of the time, we adopt the
tings. Computational learning theory (aka PAC-learning) “probably approximately correct’[Val84] goal of produgin
requires learning algorithms to be efficient in the sense of \yith high probability ( — &) a hypothesig: such that the
running in polynomial time of certain parameters [Val84, probability overz ~ D thath(z) # c¢(xz) is small €).
KV94]. That work generally restricts learning to very lim- Here we will mostly consider the concept spacéo be
ited C(_)ncep'g/hypothes_|s spaces such as perceptrons, BNF exne set of all total recursive functiong —s {0,1}. We
pressions, limited-weight neural networks, etc. The purel gsay that this is a universal learning setting becatisia-
statistical learning theory paradigm ignores issues of-com c|ydes any practical classification scheme. We will mostly
putability [VC71,Vap98]. Work on learning arbitrary com-  consider the hypothesis space to be the set of all partial re-
putable functions is mostly in the “learning in the limit"  cyrsjve functionsy — {0,1, L}, where.L indicates failure
paradigm|[Gol67, Angg8], in which the goal of learning is g halt. From PAC learning it is known that sometimes it
to eventually converge to the perfectly correct hypothasis  helps to use different concept and hypothesis classeseif on
opposed to approximating it with an approximately correct gesjres the learning algorithm to be efficient [PV88]. In a
hypothesis. . . related way, allowing our algorithm to output a partial necu

The idea of allowing the learner to ask for a varying num-  sjve function that may not halt on all inputs seems to per-
ber of training samples based on the ones previously seenyit learning (e.g. Theorefi 2). Abusing notatienc C' or
was studied before in statistical learning thedry [LMR88, }, ¢ 1 will refer to either the function or to a representation
BI94]. Linial et al [LMR88] called this model “dynamic  of that function as a program. Similarty and H will refer
sampling” and showed that dynamic sampling allows learn- to the sets of functions or to the sets of representatiortseof t
ing with a hypothesis space of infinite VC-dimension if all  corresponding functions. We assume all programs are writ-
hypotheses can be enumerated. This is essentially Thébrem 4en in some fixed alphabet and are interpreted by some fixed
of our paper. However, the hypothesis space of all com- ynjversal Turing machine. f is a partial recursive function
putable functions cannot be enumerated by any algorithm,and s (z) = L then by conventiorh(z) # &'(z) for any
and thus these results do not directly imply the existence of partial recursive function’ (even if#/(z) = L also).
a learning algorithm in our setting. We can now define what we mean by a learning algo-

Our proof technique for establishing positive results rithm:
(Theoreni®) is parallel evaluation of all hypotheses, and is
based on Levin's universal search [Lev73]. In learning the- Definition 1 Algorithm A is alearning algorithmover sam-
ory, Levin's universal search was previously used by Gol- ple spaceX, concept spac€’, and hypothesis spad¢ if:
dreich and Ror [GR97] to evaluate all learning algorithms in

parallel and obtain an algorithm with asymptotically opgim * (syntactic requirements} takes two input$ € (0, 1)
computation time. ande € (0,1/2), queries an oracle for pairs iX" x
The main negative result of this paper is showing the ab- {0,1}, and if A halts it outputs a hypothesis< H.

sence of distribution independent bounds on sample com- e (semantic requirements) For ardye, for any concept
plexity for computable universal learning algorithms (The ¢ € C, and distributionD over X, if the oracle returns
orem®). Recently Ryabko [Rya05] considered learning ar- pairs (z, c(x)) for z drawn iid from D, then A always
bitrary computable classifiers, albeit in a setting wheee th halts, and with probability at least— § outputs a hypo-
number of samples for the learning algorithm is externally thesish such thatPr,.p[h(x) # c(z)] < e.

chosen. He demonstrated a computational difficulty in deter

mining the number of samples needed: it grows faster than  The always halting requirement seems a nice property of
any computable function of the length of the target concept. the learning algorithm and indeed the learning algorithm we
In contrast, we prove that distribution-independent beund develop (Theorernl2) will halt for any concept and sequence
do not exist altogether for computable learning algoritiims ~ of samples. However, relaxing this requirement to allow a

our setting. non-zero probability that the learning algorithm queries t
oracle for infinitely many samples does not change our nega-

3 Definitions tive results (Theorem 5), as long as a finite number of oracle
calls implies halting.

The sample space is the universe of possible points over The fundamental notion in statistical learning theory is

which learning occurs. Here we will largely suppose the that of sample complexity. Since the VC-dimension of

sample spacg is the set of all finite binary string0, 1}*. our hypothesis space is infinite, there is umiform bound

A concept spac&” and hypothesis spacél/ are sets of  m(d,e) on the number of samples needed to learn to the

boolean-valued functions oveX, which are said tdabel 0,¢ level of accuracy. We will consider the question of

pointsz € X as0/1. The concept spac€ is the set of all whether for a given learning algorithm there idistribution-

possible labeling functions that our learning algorithmyma independent boundn(c,d,¢) on the number of samples
be asked to learn from. In each learning scenario, there isqueried from the oracle where € C is the target hypo-
some unknowitarget concept € C that represents the de- thesis. In other words the bound is allowed to depend on the
sired way of labeling points. There is also an unkn®am- target concept but not on the sample distributidn. Such a



bound may be satisfied with certainty, or satisfied with high In essence, we can make the above learning algorithm

probability over the learning samples. query for more samples than is necessary for statistical rea
sons alone. Intuitively, suppose that/an coming early in
4 Results the ordering is always correct but takes a very long time to

. . _ . compute. The learning algorithm cannot wait for thjs to
We first show that there is a computable learning algorithm .ok hecause it does not know that any particélawill

in our setting. ever halt. At some point it has to start testitags that come

Theorem 2 There is a learning algorithm over sample |ater in the ordering and that have largexi)'s. Testing

spaceX of all finite binary strings, hypothesis spa& of these requires more learning samples thair).
all partial recursive functions, and concept spaceof all If we can know whicth,'s are safe to skip over since they
total recursive functions. don't halt, and for whicth;’s we should wait, then the above

problem is solved. Indeed, the following theorem shows that
In order to prove this theorem we need the following there is no statistical reason why a distribution-indefegnd
lemma. Results equivalent to this lemma can be found boundm/(c, d, ¢) is impossible. The theorem presents a well
in [LMR88]. defined method of learning (albeit an uncomputable one) for
which there exists such a bound, and this bound is satisfied
Lemma 3 Let X be any sample space anf? be any  ith certainty. Below, the halting oracle givegl answers to

distribution over X.  Fix any functonc¢ : X — questions of the fornh, 2) whereh € H,z € X such that
{0,1}. Suppose hypothesis spaég is countable, and a1 answer indicates that(z) halts and & answer indicates
let hyi,ho,... be some ordering off. For any d,e, it does not; the answers are clearly uncomputable.

let m(i) = [(2Ini+1In(1/8) +In(7%/6))/c]. Suppose

x1,x2,... IS an infinite sequence of iid samples drawn from Theorem 4 If a learning algorithm is allowed to query the

D. Then the probability that there exists € H such halting oracle, then there is a learning algorithm over sam-
that Pr,.p[h;(z) # c(x)] > e, buth, agrees withc on ple spaceX of all finite binary strings, hypothesis spaéé

T1,T2, .- 5 Tin(i), 1S €SS tham. of all partial recursive functions, and concept spacef all

o . . total recursive functions, and a function : C' x (0,1) x
Proof: The probability that a particuldr; with error prob- ) 1 /9y _, N, such that for any approximation parameters
ability Pr,.p[hi(z) # c(x)] > e getsm(i) ii.d. instances 5 - ‘any target concept € €, and any distributionD over
drawn fromD correct is less thafil — &)™) < e=m()e < X, the learning algorithm uses at most(c, §, <) training

(6/72)(6/i%). By the union bound, the probability thahy samples.

h; with error probability greater than getsm(i) instances

correctis less thah_ ;= (6/72)(/i?) = 6. | Proof: Rather than dovetailing as is done for the computable
learning algorithm (Theorern] 2), we can sequentially test
everyh; on samplesy, ..., z,,; because we can deter-
mine whetherh; halts on a given input. Since = h;«

for someh,;~ € H, the hypothesig,; we output will al-
ways satisfyi < i*, and therefore we will require at most
m(i*) = [(21n(i*) 4+ In(1/8) + In(7?/6))/c] samples. B

Proof of Theorem|[2: Let hy, hs,... be a recursive enu-
meration of H (for example in lexicographic order). For the
givend, e, letm(i) be defined as in Lemnid 3. The learning
algorithm computes infinitely many threatl®, . . . running

in parallel. This can be done by a standard dovetailing tech-
nigue. (For example use the following schedule: foe 1

to infinity, for ¢ = 1 to k, perform stegc — ¢ + 1 of thread We now show that for angomputablelearning algo-
1.) Thread: sequentially checks whethég(z1) = c(x1), rithm, and any possible sample boundc, ¢, ¢), there is a
hi(z2) = c(x2), ...y hi(Tm@)) = c(Tpme), exiting if a target concept and a sample distribution such that this sam-

check fails. If allm(i) checks pass, threaderminates and  ple bound is violated with high probability. The probalyilit
outputsh,. The learning algorithm queries the oracle as nec- of violation can be made arbitrarily closelte-2(5+(1—4)e)
essary for new learning samples and their labeling. The-over (which approaches asd, e — 0). In fact this theorem is
all algorithm terminates as soon as some thread outputs arstronger: it shows that given a learning algorithm, without
h;, and outputs this hypothesis. By Lemia 3, with proba- varying the target concept, but just by varying the distribu
bility at leastl — ¢, this h; has error probability less than tion it is possible to make the algorithm ask for arbitrarily
Further, sinceC C H, the learning algorithm will always  many learning samples with high probability.

terminate. ) )
Theorem 5 For any learning algorithm over sample space

Note that it seems necessary to expand the hypothesisx of all finite binary strings, hypothesis spadé of all
space to include all partial recursive functions because th partial recursive functions, and concept spaceof all to-
concept space of total recursive functions does not have atal recursive functions, there is a target concepte C,
recursive enumeration (it is uncomputable whether a given such that for any approximation parametefs:, for any
program is total recursive or not). p<1—2(8+ (1 —0)e), and for any sample bound € N

We will see in Theoreni]5 that there is no bound there is a distributionD over X, such that the learning al-

m(c, d,¢) on the number of samples queried by any com- gorithm uses more tham training samples with probability
putable learning algorithm in our setting. Let us obtainsom  at |eastp.

intuition for why that is true for the above learning algbnit.
Then we will contrast this to the case of an uncomputable  The key difference between a computable and an uncom-
learning algorithm. putable learning algorithm, is that a concept can simulate



a computable one. By simulating the learning algorithm, a {0,1}* as a tuple(d, e, m, d, i) for § € (0,1), ¢ € (0,1/2)
concept can choose to behave in way that is bad for the learn-andm, d,i € N using some fixed one-to-one encoding of
ing algorithm’s sample complexity. such tuples as binary strings.alfcannot be decoded appro-
To prove the above theorem, we will first need the fol- priately, or ifi > d then P returns0. Otherwise, for these
lowing lemma. The lemma essentially shows a situation such§, &, m, d, let X < {0,1}* be the set ofl strings which are
that any learning algorithm according to our definition must jnterpreted ag (s, e, m, d, 1), . .., (3,e,m,d,d)}, and letD
query for more tham: learming samples with high probabil- be a uniform distribution oveX and0 elsewhere. Let’

ity when the target concept is chosen adversarily. Thelemmay,g y,0 sot of ail possible labelings &F. For each labeling
is true even without requiring the learning algorithm to be 7~ "1 h bability. that A ai
computable. Note that the lemma does not directly imply ¢ € > Program> computes the probability; that A given

the theorem above, even in its weaker form, because in or-2CCUracy parameterse, queries for more tham sample

der to increase the number of learning samples that arg likel Points if points are drawn fronb labeled according te.
queried by the learning algorithm, we have to change the tar- For eacty, this requires simulating for at mostd™ differ-
get concept. Sinceu(c, s, <) is a function ofc, there is no €Nt sequences of sample points. Eet= argmax, ~{pz},
guarantee that the bound doesn’t become larger as well. ~ breaking ties in some fixed way. Finally outputsc*(z).

Observe thatP is total recursive sincel spends a fi-
Lemma 6 Let X be a set ofl points, and letC’ be the set  nite time on any finite sequence of sample points. (This is a
of all labelings ofX. Let D be a uniform distribution over  weaker condition than the always halting requirement of our
X. Supposel is a learning algorithm over sample spagg definition of a learning algorithm.) ThuB is somec* € C.
concept and hypothesis spaCe For any accuracy param-  Further, for anys, e, m,d, on all points(d,e,m,d, i) for
etersd,e and anym < d, there is a concept € C such  ; < ¢, P finds the samé*, and thus on these points acts

that when the oracle draws fro® labeled according ta like thisé*. By Lemmd®, ifm < d then this¢* has the prop-

the probability thatd samples more tham points is at least A 2d(5+(1=8)¢) e )
1_ p2d(5+(1—5))/a) P P erty thatpe- > 1 — ==——==>_ Therefore, ifA is given ac

d—m curacy parameterse, the target conceptis’, and the distri-
butionD is uniform over{{d,e, m,d, 1),...,(d,e,m,d,d)}
Proof: We use the probabilistic method to find a particularly for somed € N such thain < d, then the probability that
bad concept*. Suppose we do not start with a fixed target 4 requests more than samples is at leagt— 2d(6+(1—0)e)
concepte, but draw it uniformly fromC. In other wordsge d-m

is determined by valuebe(z)}.c x drawn uniformly from Sl_nce we can choosk such thatd is large enough, we ob-
h tain the desired result. |

{0,1}. Given somery, ..., Tm, c(x1),...,c(Tn), andx ¢

{z1,...,2m}, the value ok(x) is a fair coin flip. Thusif on

Z1,..., %, labeled bye(xq), . .., ¢(x,,), A outputs a hypo- .
thesis without asking for more samples, then the hypothesis® ~Conclusion
is incorrect onz with probability1/2. If we now letx vary,

the probability that the hypothesis is incorrectois atleast e have shown that learning arbitrary computable classifier

(1/2)(d — m)/d since there are at leagt— m points notin s possible in the statistical learning paradigm. Howewver f
T1,...,Tm. Now suppose for any the probability thatd 3y computable learning algorithm, the number of samples
samples more tham points is at mosp. Then the uncondi-  required to learn to a desired level of accuracy may become
tional probability that the hypothesis outputBys incorrect  arpjtrarily large depending on the sample distributionisTh
on arandom sample pointis at legst- p)(1/2)(d —m)/d. is in contrast to uncomputable learning methods in the same

This implies that there is a concept € ' such that the  ypjyersal setting whose sample complexity can be bounded
probability that the hypothesis output byis incorrectona  jndependently of the distribution.
random sample pointis at legdt— p)(1/2)(d — m)/d.

Since A is a learning algorithm, when we usé to la-
bel the training points, and use accuracy parameétersthe
probability that the hypothesis producedfyas error prob-
ability greater than is at mos®. If we make the worst case
assumption that whenever the error probability of the hypo-
thesis is larger thaait is exactly1, and otherwise the error
probability is exactlys, then the probability that the hypo-

Our results mean that there is a big price in terms of sam-
ple complexity to be paid for the combination of universalit
and computability of the learner. Specifically, by tweaking
the distribution we can make a computable universal learner
arbitrarily worse than a restricted learning algorithm di a
nite VC-dimensional hypothesis space, or even an uncom-
putable universal learner.

thesis output by is incorrect on a random sample point is While we have presented a single computable learning
atmostd - 1+ (1 — §)e. Thus(1l — p)(1/2)(d — m)/d < algorithm in our universal setting, one would like to deyelo
§+ (1 — 0)e, implying thatp > 1 — 2d(63(1—6)6)_ ] a measure that would allow different learning algorithms to

be compared to each other in terms of sample complexity.
Now in order to prove Theoref 5, we essentially show We have seen that sample complexityc, ¢, €) is not such
that there is some fixed concept that behaves as the bad a measure; is there a viable alternative?

c'sin arbitrary instances of Lemria 6. Finally, we have ignored computation time in our anal-

ysis. As such, our learning algorithm is not likely to have
Proof of Theorem[8: Consider the following progran® : practical significance. Integrating running time into the-t
{0,1}* — {0,1}. First it interprets the given string € ory presented would be a critical extension.
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