
ar
X

iv
:0

80
6.

35
37

v2
 [

cs
.L

G
]

10
 J

ul
 2

00
8

Statistical Learning of Arbitrary Computable Classifiers

David Soloveichik∗

California Institute of Technology
MC 136-93

Pasadena, CA 91125
dsolov@caltech.edu

Abstract

Statistical learning theory chiefly studies restricted
hypothesis classes, particularly those with finite
Vapnik-Chervonenkis (VC) dimension. The fun-
damental quantity of interest is the sample com-
plexity: the number of samples required to learn to
a specified level of accuracy. Here we consider
learning over the set of all computable labeling
functions. Since the VC-dimension is infinite and
a priori (uniform) bounds on the number of sam-
ples are impossible, we let the learning algorithm
decide when it has seen sufficient samples to have
learned. We first show that learning in this setting
is indeed possible, and develop a learning algo-
rithm. We then show, however, that bounding sam-
ple complexity independently of the distribution is
impossible. Notably, this impossibility is entirely
due to the requirement that the learning algorithm
be computable, and not due to the statistical nature
of the problem.

1 Introduction

Suppose we are trying to learn a difficult classification prob-
lem: for example determining whether the given image con-
tains a human face, or whether the MRI image shows a ma-
lignant tumor, etc. We may first try to train a simple model
such as a small neural network. If that fails, we may move
on to other, potentially more complex, methods of classifi-
cation such as support vector machines with different ker-
nels, techniques to apply certain transformations to the data
first, etc. Conventional statistical learning theory attempts
to bound the number of samples needed to learn to a spec-
ified level of accuracy for each of the above models (e.g.
neural networks, support vector machines). Specifically, it is
enough to bound the VC-dimension of the learning model to
determine the number of samples to use [VC71, BEHW89].
However, if we allow ourselves to change the model, then
the VC-dimension of the overall learning algorithm is not fi-
nite, and much of statistical learning theory does not directly
apply.

∗I thank Erik Winfree and Matthew Cook for discussions and
invaluable support.

Accepting that much of the time the complexity of the
model cannot be a priori bounded, Structural Risk Minimiza-
tion [Vap98] explicitly considers a hierarchy of increasingly
complex models. An alternative approach, and one we fol-
low in this paper, is simply to consider a single learning
model that includes all possible classification methods.

We consider the unrestricted learning model consisting
of all computable classifiers. Since the VC-dimension is
clearly infinite, there are no uniform bounds (independent
of the distribution and the target concept) on the number of
samples needed to learn accurately [BEHW89]. Yet we still
want to guarantee a desired level of accuracy. Rather than
deciding on the number of samples a priori, it is natural to
allow the learning algorithm to decide when it has seen suffi-
ciently many labeled samples based on the training samples
seen up to now and their labels. Since the above learning
model includes any practical classification scheme, we term
it universal (PAC-) learning.

We first show that there is a computable learning al-
gorithm in our universal setting. Then, in order to obtain
bounds on the number of training samples that would be
needed, we consider measuring sample complexity of the
learning algorithm as a function of the unknown correct la-
beling function (i.e. target concept). Although the correct
labeling is unknown, this sample complexity measure could
be used to compare learning algorithms speculatively: “if the
target labeling were such and such, learning algorithmA re-
quires fewer samples than learning algorithmB”. By asking
what is the largest sample size needed assuming the target
labeling function is in a certain class, we could compare the
sample complexity of the universal learner to a learner over
the restricted class (e.g. with finite VC-dimension).

However, we prove that it is impossible to bound the
sample complexity of anycomputableuniversal learning al-
gorithm, even as a function of the target concept. Depending
on the distribution, any such bound will be exceeded with ar-
bitrarily high probability. The impossibility of a distribution-
independent bound is entirely due to the computability re-
quirement. Indeed we show there is an uncomputable learn-
ing procedure for which we bound the number of samples
queried as a function of the unknown target concept, inde-
pendently of the distribution.

Our results imply that computable learning algorithms
in the universal setting must “waste samples” in the sense
of requiring more samples than is necessary for statistical
reasons alone.

http://arXiv.org/abs/0806.3537v2

2 Relation to Previous Work

There is comparatively little work in statistical learningthe-
ory on learning arbitrary computable classifiers compared to
the volume of research on learning in more restricted set-
tings. Computational learning theory (aka PAC-learning)
requires learning algorithms to be efficient in the sense of
running in polynomial time of certain parameters [Val84,
KV94]. That work generally restricts learning to very lim-
ited concept/hypothesis spaces such as perceptrons, DNF ex-
pressions, limited-weight neural networks, etc. The purely
statistical learning theory paradigm ignores issues of com-
putability [VC71, Vap98]. Work on learning arbitrary com-
putable functions is mostly in the “learning in the limit”
paradigm [Gol67, Ang88], in which the goal of learning is
to eventually converge to the perfectly correct hypothesisas
opposed to approximating it with an approximately correct
hypothesis.

The idea of allowing the learner to ask for a varying num-
ber of training samples based on the ones previously seen
was studied before in statistical learning theory [LMR88,
BI94]. Linial et al [LMR88] called this model “dynamic
sampling” and showed that dynamic sampling allows learn-
ing with a hypothesis space of infinite VC-dimension if all
hypotheses can be enumerated. This is essentially Theorem 4
of our paper. However, the hypothesis space of all com-
putable functions cannot be enumerated by any algorithm,
and thus these results do not directly imply the existence of
a learning algorithm in our setting.

Our proof technique for establishing positive results
(Theorem 2) is parallel evaluation of all hypotheses, and is
based on Levin’s universal search [Lev73]. In learning the-
ory, Levin’s universal search was previously used by Gol-
dreich and Ron [GR97] to evaluate all learning algorithms in
parallel and obtain an algorithm with asymptotically optimal
computation time.

The main negative result of this paper is showing the ab-
sence of distribution independent bounds on sample com-
plexity for computable universal learning algorithms (The-
orem 5). Recently Ryabko [Rya05] considered learning ar-
bitrary computable classifiers, albeit in a setting where the
number of samples for the learning algorithm is externally
chosen. He demonstrated a computational difficulty in deter-
mining the number of samples needed: it grows faster than
any computable function of the length of the target concept.
In contrast, we prove that distribution-independent bounds
do not exist altogether for computable learning algorithmsin
our setting.

3 Definitions

Thesample spaceX is the universe of possible points over
which learning occurs. Here we will largely suppose the
sample spaceX is the set of all finite binary strings{0, 1}∗.
A concept spaceC and hypothesis spaceH are sets of
boolean-valued functions overX , which are said tolabel
pointsx ∈ X as0/1. The concept spaceC is the set of all
possible labeling functions that our learning algorithm may
be asked to learn from. In each learning scenario, there is
some unknowntarget conceptc ∈ C that represents the de-
sired way of labeling points. There is also an unknownsam-

ple distributionD overX . The learning algorithm chooses
ahypothesish ∈ H based on iid samples drawn fromD and
labeled according to the target conceptc. Since we cannot
hope to distinguish between a hypothesis that is always cor-
rect and one that is correct most of the time, we adopt the
“probably approximately correct” [Val84] goal of producing
with high probability (1 − δ) a hypothesish such that the
probability overx ∼ D thath(x) 6= c(x) is small (ε).

Here we will mostly consider the concept spaceC to be
the set of all total recursive functionsX → {0, 1}. We
say that this is a universal learning setting becauseC in-
cludes any practical classification scheme. We will mostly
consider the hypothesis space to be the set of all partial re-
cursive functionsX → {0, 1,⊥}, where⊥ indicates failure
to halt. From PAC learning it is known that sometimes it
helps to use different concept and hypothesis classes, if one
desires the learning algorithm to be efficient [PV88]. In a
related way, allowing our algorithm to output a partial recur-
sive function that may not halt on all inputs seems to per-
mit learning (e.g. Theorem 2). Abusing notation,c ∈ C or
h ∈ H will refer to either the function or to a representation
of that function as a program. SimilarlyC andH will refer
to the sets of functions or to the sets of representations of the
corresponding functions. We assume all programs are writ-
ten in some fixed alphabet and are interpreted by some fixed
universal Turing machine. Ifh is a partial recursive function
andh(x) = ⊥ then by conventionh(x) 6= h′(x) for any
partial recursive functionh′ (even ifh′(x) = ⊥ also).

We can now define what we mean by a learning algo-
rithm:

Definition 1 AlgorithmA is a learning algorithmover sam-
ple spaceX , concept spaceC, and hypothesis spaceH if:

• (syntactic requirements)A takes two inputsδ ∈ (0, 1)
and ε ∈ (0, 1/2), queries an oracle for pairs inX ×
{0, 1}, and ifA halts it outputs a hypothesish ∈ H .

• (semantic requirements) For anyδ, ε, for any concept
c ∈ C, and distributionD overX , if the oracle returns
pairs (x, c(x)) for x drawn iid fromD, thenA always
halts, and with probability at least1−δ outputs a hypo-
thesish such thatPrx∼D[h(x) 6= c(x)] < ε.

The always halting requirement seems a nice property of
the learning algorithm and indeed the learning algorithm we
develop (Theorem 2) will halt for any concept and sequence
of samples. However, relaxing this requirement to allow a
non-zero probability that the learning algorithm queries the
oracle for infinitely many samples does not change our nega-
tive results (Theorem 5), as long as a finite number of oracle
calls implies halting.

The fundamental notion in statistical learning theory is
that of sample complexity. Since the VC-dimension of
our hypothesis space is infinite, there is nouniform bound
m(δ, ε) on the number of samples needed to learn to the
δ, ε level of accuracy. We will consider the question of
whether for a given learning algorithm there is adistribution-
independent boundm(c, δ, ε) on the number of samples
queried from the oracle wherec ∈ C is the target hypo-
thesis. In other words the bound is allowed to depend on the
target conceptc but not on the sample distributionD. Such a

bound may be satisfied with certainty, or satisfied with high
probability over the learning samples.

4 Results

We first show that there is a computable learning algorithm
in our setting.

Theorem 2 There is a learning algorithm over sample
spaceX of all finite binary strings, hypothesis spaceH of
all partial recursive functions, and concept spaceC of all
total recursive functions.

In order to prove this theorem we need the following
lemma. Results equivalent to this lemma can be found
in [LMR88].

Lemma 3 Let X be any sample space andD be any
distribution over X . Fix any function c : X →
{0, 1}. Suppose hypothesis spaceH is countable, and
let h1, h2, . . . be some ordering ofH . For any δ, ε,
let m(i) = ⌈(2 ln i + ln(1/δ) + ln(π2/6))/ε⌉. Suppose
x1, x2, . . . is an infinite sequence of iid samples drawn from
D. Then the probability that there existshi ∈ H such
that Prx∼D[hi(x) 6= c(x)] > ε, but hi agrees withc on
x1, x2, . . . , xm(i), is less thanδ.

Proof: The probability that a particularhi with error prob-
ability Prx∼D[hi(x) 6= c(x)] > ε getsm(i) i.i.d. instances
drawn fromD correct is less than(1 − ε)m(i) ≤ e−m(i)ε ≤
(6/π2)(δ/i2). By the union bound, the probability thatany
hi with error probability greater thanε getsm(i) instances
correct is less than

∑
∞

i=1(6/π2)(δ/i2) = δ.

Proof of Theorem 2: Let h1, h2, . . . be a recursive enu-
meration ofH (for example in lexicographic order). For the
givenδ, ε, let m(i) be defined as in Lemma 3. The learning
algorithm computes infinitely many threads1, 2, . . . running
in parallel. This can be done by a standard dovetailing tech-
nique. (For example use the following schedule: fork = 1
to infinity, for i = 1 to k, perform stepk − i + 1 of thread
i.) Threadi sequentially checks whetherhi(x1) = c(x1),
hi(x2) = c(x2), . . . , hi(xm(i)) = c(xm(i)), exiting if a
check fails. If allm(i) checks pass, threadi terminates and
outputshi. The learning algorithm queries the oracle as nec-
essary for new learning samples and their labeling. The over-
all algorithm terminates as soon as some thread outputs an
hi, and outputs this hypothesis. By Lemma 3, with proba-
bility at least1 − δ, thishi has error probability less thanε.
Further, sinceC ⊂ H , the learning algorithm will always
terminate.

Note that it seems necessary to expand the hypothesis
space to include all partial recursive functions because the
concept space of total recursive functions does not have a
recursive enumeration (it is uncomputable whether a given
program is total recursive or not).

We will see in Theorem 5 that there is no bound
m(c, δ, ε) on the number of samples queried by any com-
putable learning algorithm in our setting. Let us obtain some
intuition for why that is true for the above learning algorithm.
Then we will contrast this to the case of an uncomputable
learning algorithm.

In essence, we can make the above learning algorithm
query for more samples than is necessary for statistical rea-
sons alone. Intuitively, suppose that anhi∗ coming early in
the ordering is always correct but takes a very long time to
compute. The learning algorithm cannot wait for thishi∗ to
finish, because it does not know that any particularhi will
ever halt. At some point it has to start testinghi’s that come
later in the ordering and that have largerm(i)’s. Testing
these requires more learning samples thanm(i∗).

If we can know whichhi’s are safe to skip over since they
don’t halt, and for whichhi’s we should wait, then the above
problem is solved. Indeed, the following theorem shows that
there is no statistical reason why a distribution-independent
boundm(c, δ, ε) is impossible. The theorem presents a well
defined method of learning (albeit an uncomputable one) for
which there exists such a bound, and this bound is satisfied
with certainty. Below, the halting oracle gives0/1 answers to
questions of the form(h, x) whereh ∈ H, x ∈ X such that
a1 answer indicates thath(x) halts and a0 answer indicates
it does not; the answers are clearly uncomputable.

Theorem 4 If a learning algorithm is allowed to query the
halting oracle, then there is a learning algorithm over sam-
ple spaceX of all finite binary strings, hypothesis spaceH
of all partial recursive functions, and concept spaceC of all
total recursive functions, and a functionm : C × (0, 1) ×
(0, 1/2) → N, such that for any approximation parameters
δ, ε, any target conceptc ∈ C, and any distributionD over
X , the learning algorithm uses at mostm(c, δ, ε) training
samples.

Proof: Rather than dovetailing as is done for the computable
learning algorithm (Theorem 2), we can sequentially test
everyhi on samplesx1, . . . , xm(i) because we can deter-
mine whetherhi halts on a given input. Sincec = hi∗

for somehi∗ ∈ H , the hypothesishi we output will al-
ways satisfyi < i∗, and therefore we will require at most
m(i∗) = ⌈(2 ln(i∗) + ln(1/δ) + ln(π2/6))/ε⌉ samples.

We now show that for anycomputablelearning algo-
rithm, and any possible sample boundm(c, δ, ε), there is a
target conceptc and a sample distribution such that this sam-
ple bound is violated with high probability. The probability
of violation can be made arbitrarily close to1−2(δ+(1−δ)ε)
(which approaches1 asδ, ε → 0). In fact this theorem is
stronger: it shows that given a learning algorithm, without
varying the target concept, but just by varying the distribu-
tion it is possible to make the algorithm ask for arbitrarily
many learning samples with high probability.

Theorem 5 For any learning algorithm over sample space
X of all finite binary strings, hypothesis spaceH of all
partial recursive functions, and concept spaceC of all to-
tal recursive functions, there is a target conceptc ∈ C,
such that for any approximation parametersδ, ε, for any
ρ < 1 − 2(δ + (1 − δ)ε), and for any sample boundm ∈ N

there is a distributionD overX , such that the learning al-
gorithm uses more thanm training samples with probability
at leastρ.

The key difference between a computable and an uncom-
putable learning algorithm, is that a concept can simulate

a computable one. By simulating the learning algorithm, a
concept can choose to behave in way that is bad for the learn-
ing algorithm’s sample complexity.

To prove the above theorem, we will first need the fol-
lowing lemma. The lemma essentially shows a situation such
that any learning algorithm according to our definition must
query for more thanm learning samples with high probabil-
ity when the target concept is chosen adversarily. The lemma
is true even without requiring the learning algorithm to be
computable. Note that the lemma does not directly imply
the theorem above, even in its weaker form, because in or-
der to increase the number of learning samples that are likely
queried by the learning algorithm, we have to change the tar-
get concept. Sincem(c, δ, ε) is a function ofc, there is no
guarantee that the bound doesn’t become larger as well.

Lemma 6 Let X be a set ofd points, and letC be the set
of all labelings ofX . Let D be a uniform distribution over
X . SupposeA is a learning algorithm over sample spaceX ,
concept and hypothesis spaceC. For any accuracy param-
etersδ, ε and anym < d, there is a conceptc ∈ C such
that when the oracle draws fromD labeled according toc
the probability thatA samples more thanm points is at least
1 − 2d(δ+(1−δ)ε)

d−m
.

Proof: We use the probabilistic method to find a particularly
bad conceptc∗. Suppose we do not start with a fixed target
conceptc, but draw it uniformly fromC. In other words,c
is determined by values{c(x)}x∈X drawn uniformly from
{0, 1}. Given somex1, . . . , xm, c(x1), . . . , c(xm), andx 6∈
{x1, . . . , xm}, the value ofc(x) is a fair coin flip. Thus if on
x1, . . . , xm labeled byc(x1), . . . , c(xm), A outputs a hypo-
thesis without asking for more samples, then the hypothesis
is incorrect onx with probability1/2. If we now letx vary,
the probability that the hypothesis is incorrect onx is at least
(1/2)(d − m)/d since there are at leastd − m points not in
x1, . . . , xm. Now suppose for anyc the probability thatA
samples more thanm points is at mostρ. Then the uncondi-
tional probability that the hypothesis output byA is incorrect
on a random sample point is at least(1−ρ)(1/2)(d−m)/d.
This implies that there is a conceptc∗ ∈ C such that the
probability that the hypothesis output byA is incorrect on a
random sample point is at least(1 − ρ)(1/2)(d − m)/d.

SinceA is a learning algorithm, when we usec∗ to la-
bel the training points, and use accuracy parametersδ, ε, the
probability that the hypothesis produced byA has error prob-
ability greater thanε is at mostδ. If we make the worst case
assumption that whenever the error probability of the hypo-
thesis is larger thanε it is exactly1, and otherwise the error
probability is exactlyε, then the probability that the hypo-
thesis output byA is incorrect on a random sample point is
at mostδ · 1 + (1 − δ)ε. Thus(1 − ρ)(1/2)(d − m)/d ≤

δ + (1 − δ)ε, implying thatρ ≥ 1 − 2d(δ+(1−δ)ε)
d−m

.

Now in order to prove Theorem 5, we essentially show
that there is some fixed conceptc∗ that behaves as the bad
c’s in arbitrary instances of Lemma 6.

Proof of Theorem 5: Consider the following programP :
{0, 1}∗ → {0, 1}. First it interprets the given stringx ∈

{0, 1}∗ as a tuple〈δ, ε, m, d, i〉 for δ ∈ (0, 1), ε ∈ (0, 1/2)
andm, d, i ∈ N using some fixed one-to-one encoding of
such tuples as binary strings. Ifx cannot be decoded appro-
priately, or if i > d thenP returns0. Otherwise, for these
δ, ε, m, d, let X̂ ⊂ {0, 1}∗ be the set ofd strings which are
interpreted as{〈δ, ε, m, d, 1〉, . . . , 〈δ, ε, m, d, d〉}, and letD̂
be a uniform distribution over̂X and0 elsewhere. Let̂C
be the set of all possible labelings of̂X. For each labeling
ĉ ∈ Ĉ, programP computes the probabilityρĉ thatA given
accuracy parametersδ, ε, queries for more thanm sample
points if points are drawn from̂D labeled according tôc.
For eacĥc, this requires simulatingA for at mostdm differ-
ent sequences of sample points. Letĉ∗ = argmax

ĉ∈Ĉ
{ρĉ},

breaking ties in some fixed way. FinallyP outputsĉ∗(x).

Observe thatP is total recursive sinceA spends a fi-
nite time on any finite sequence of sample points. (This is a
weaker condition than the always halting requirement of our
definition of a learning algorithm.) ThusP is somec∗ ∈ C.
Further, for anyδ, ε, m, d, on all points〈δ, ε, m, d, i〉 for
i ≤ d, P finds the samêc∗, and thus on these pointsc∗ acts
like this ĉ∗. By Lemma 6, ifm < d then thiŝc∗ has the prop-
erty thatρĉ∗ ≥ 1− 2d(δ+(1−δ)ε)

d−m
. Therefore, ifA is given ac-

curacy parametersδ, ε, the target concept isc∗, and the distri-
butionD is uniform over{〈δ, ε, m, d, 1〉, . . . , 〈δ, ε, m, d, d〉}
for somed ∈ N such thatm < d, then the probability that
A requests more thanm samples is at least1− 2d(δ+(1−δ)ε)

d−m
.

Since we can chooseD such thatd is large enough, we ob-
tain the desired result.

5 Conclusion

We have shown that learning arbitrary computable classifiers
is possible in the statistical learning paradigm. However for
any computable learning algorithm, the number of samples
required to learn to a desired level of accuracy may become
arbitrarily large depending on the sample distribution. This
is in contrast to uncomputable learning methods in the same
universal setting whose sample complexity can be bounded
independently of the distribution.

Our results mean that there is a big price in terms of sam-
ple complexity to be paid for the combination of universality
and computability of the learner. Specifically, by tweaking
the distribution we can make a computable universal learner
arbitrarily worse than a restricted learning algorithm on afi-
nite VC-dimensional hypothesis space, or even an uncom-
putable universal learner.

While we have presented a single computable learning
algorithm in our universal setting, one would like to develop
a measure that would allow different learning algorithms to
be compared to each other in terms of sample complexity.
We have seen that sample complexitym(c, δ, ε) is not such
a measure; is there a viable alternative?

Finally, we have ignored computation time in our anal-
ysis. As such, our learning algorithm is not likely to have
practical significance. Integrating running time into the the-
ory presented would be a critical extension.

References

[Ang88] D. Angluin. Identifying languages from
stochastic examples. Technical report, Yale
University, Department of Computer Science,
1988.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension.Journal of the ACM,
36(4):929–965, 1989.

[BI94] G. M. Benedek and A. Itai. Nonuniform learn-
ability. Journal of Computer and System Sci-
ences, pages 311–323, 1994.

[Gol67] E. M. Gold. Language Identification in the
Limit. Information and Control, 10:447–474,
1967.

[GR97] O. Goldreich and D. Ron. On universal learn-
ing algorithms.Information Processing Letters,
63(3):131–136, 1997.

[KV94] M. J. Kearns and U. V. Vazirani.An Introduc-
tion to Computational Learning Theory. MIT
Press, 1994.

[Lev73] L. A. Levin. Universal sequential search prob-
lems. Problems of Information Transmission,
9(3):265–266, 1973.

[LMR88] N. Linial, Y. Mansour, and R. L. Rivest. Results
on learnability and the Vapnik-Chervonenkis di-
mension. 29th Annual Symposium on Foun-
dations of Computer Science, pages 120–129,
1988.

[PV88] L. Pitt and L. G. Valiant. Computational limita-
tions on learning from examples.Journal of the
ACM, 35(4):965–984, 1988.

[Rya05] D. Ryabko. On Computability of Pattern
Recognition Problems. InProceedings of the
16th International Conference on Algorithmic
Learning Theory, pages 148–156. Springer,
2005.

[Val84] L. G. Valiant. A theory of the learnable.Com-
munications of the ACM, 27:1134–1142, 1984.

[Vap98] V. N. Vapnik.Statistical learning theory. Wiley
New York, 1998.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of
events to their probabilities.Theory of Proba-
bility and its Applications, 16:264–280, 1971.

	Introduction
	Relation to Previous Work
	Definitions
	Results
	Conclusion

